A practical guide to pseudo-marginal methods for computational inference in systems biology
For many stochastic models of interest in systems biology, such as those describing biochemical reaction networks, exact quantification of parameter uncertainty through statistical inference is intractable. Likelihood-free computational inference techniques enable parameter inference when the likeli...
Auteurs principaux: | Warne, DJ, Baker, RE, Simpson, MJ |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2020
|
Documents similaires
-
Rapid Bayesian inference for expensive stochastic models
par: Warne, DJ, et autres
Publié: (2021) -
Identifiability analysis for stochastic differential equation models in systems biology
par: Browning, AP, et autres
Publié: (2020) -
Parameter identifiability and model selection for sigmoid population growth models
par: Simpson, MJ, et autres
Publié: (2021) -
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
par: Warne, D, et autres
Publié: (2022) -
Using experimental data and information criteria to guide model selection for reaction-diffusion problems in mathematical biology
par: Warne, D, et autres
Publié: (2019)