Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand
Let there be given a non-negative, quasiconvex function F satisfying the growth condition lim supA→∞ F(A)/|A|p = 0 (*) for some p ∈ ] 1, ∞ [. For an open and bounded set Ω ⊂ ℝm, we show that if q≧ m-1/m p and q > 1, then the variational integral ℱ(u; Ω):= ∫Ω F(Du) dx is lower semicontinuous o...
Autor Principal: | Kristensen, J |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
1997
|
Títulos similares
-
Lower Semicontinuity in L1 of a Class of Functionals Defined on BV with Carathéodory Integrands
por: T. Wunderli
Publicado: (2021-01-01) -
Lower semicontinuity in spaces of weakly differentiable functions
por: Kristensen, J
Publicado: (1999) -
On necessary conditions for the weak lower semicontinuity of integral functionals in Musielak-Orlicz-Sobolev spaces
por: Elhoussine Azroul, et al.
Publicado: (2020-04-01) -
Lower semicontinuity for an integral functional in BV
por: Kristensen, J, et al.
Publicado: (2016) -
Lower semicontinuity of quasi-convex integrals in BV
por: Kristensen, J
Publicado: (1998)