Time-crystalline eigenstate order on a quantum processor.
Quantum many-body systems display rich phase structure in their low-temperature equilibrium states<sup>1</sup>. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases<sup>2-8<...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Springer Nature
2021
|
_version_ | 1797106794986733568 |
---|---|
author | Mi, X Ippoliti, M Quintana, C Greene, A Chen, Z Gross, J Arute, F Arya, K Atalaya, J Babbush, R Bardin, JC Basso, J Bengtsson, A Bilmes, A Bourassa, A Brill, L Broughton, M Buckley, BB Buell, DA Burkett, B Bushnell, N Chiaro, B Collins, R Courtney, W Debroy, D Demura, S Derk, AR Dunsworth, A Eppens, D Erickson, C Farhi, E Fowler, AG Foxen, B Gidney, C Giustina, M Harrigan, MP Harrington, SD Hilton, J Ho, A Hong, S Huang, T Huff, A Huggins, WJ Ioffe, LB Isakov, SV Iveland, J Jeffrey, E Jiang, Z Jones, C Kafri, D Sondhi, SL |
author_facet | Mi, X Ippoliti, M Quintana, C Greene, A Chen, Z Gross, J Arute, F Arya, K Atalaya, J Babbush, R Bardin, JC Basso, J Bengtsson, A Bilmes, A Bourassa, A Brill, L Broughton, M Buckley, BB Buell, DA Burkett, B Bushnell, N Chiaro, B Collins, R Courtney, W Debroy, D Demura, S Derk, AR Dunsworth, A Eppens, D Erickson, C Farhi, E Fowler, AG Foxen, B Gidney, C Giustina, M Harrigan, MP Harrington, SD Hilton, J Ho, A Hong, S Huang, T Huff, A Huggins, WJ Ioffe, LB Isakov, SV Iveland, J Jeffrey, E Jiang, Z Jones, C Kafri, D Sondhi, SL |
author_sort | Mi, X |
collection | OXFORD |
description | Quantum many-body systems display rich phase structure in their low-temperature equilibrium states<sup>1</sup>. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases<sup>2-8</sup> that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)<sup>7,9-15</sup>. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order<sup>7,16,17</sup>. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states<sup>7,9,10</sup>. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors. |
first_indexed | 2024-03-07T07:07:32Z |
format | Journal article |
id | oxford-uuid:4300d744-943a-4387-b3b8-e91f455c4f15 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T07:07:32Z |
publishDate | 2021 |
publisher | Springer Nature |
record_format | dspace |
spelling | oxford-uuid:4300d744-943a-4387-b3b8-e91f455c4f152022-05-20T21:40:57ZTime-crystalline eigenstate order on a quantum processor.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4300d744-943a-4387-b3b8-e91f455c4f15EnglishSymplectic ElementsSpringer Nature2021Mi, XIppoliti, MQuintana, CGreene, AChen, ZGross, JArute, FArya, KAtalaya, JBabbush, RBardin, JCBasso, JBengtsson, ABilmes, ABourassa, ABrill, LBroughton, MBuckley, BBBuell, DABurkett, BBushnell, NChiaro, BCollins, RCourtney, WDebroy, DDemura, SDerk, ARDunsworth, AEppens, DErickson, CFarhi, EFowler, AGFoxen, BGidney, CGiustina, MHarrigan, MPHarrington, SDHilton, JHo, AHong, SHuang, THuff, AHuggins, WJIoffe, LBIsakov, SVIveland, JJeffrey, EJiang, ZJones, CKafri, DSondhi, SLQuantum many-body systems display rich phase structure in their low-temperature equilibrium states<sup>1</sup>. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases<sup>2-8</sup> that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)<sup>7,9-15</sup>. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order<sup>7,16,17</sup>. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states<sup>7,9,10</sup>. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors. |
spellingShingle | Mi, X Ippoliti, M Quintana, C Greene, A Chen, Z Gross, J Arute, F Arya, K Atalaya, J Babbush, R Bardin, JC Basso, J Bengtsson, A Bilmes, A Bourassa, A Brill, L Broughton, M Buckley, BB Buell, DA Burkett, B Bushnell, N Chiaro, B Collins, R Courtney, W Debroy, D Demura, S Derk, AR Dunsworth, A Eppens, D Erickson, C Farhi, E Fowler, AG Foxen, B Gidney, C Giustina, M Harrigan, MP Harrington, SD Hilton, J Ho, A Hong, S Huang, T Huff, A Huggins, WJ Ioffe, LB Isakov, SV Iveland, J Jeffrey, E Jiang, Z Jones, C Kafri, D Sondhi, SL Time-crystalline eigenstate order on a quantum processor. |
title | Time-crystalline eigenstate order on a quantum processor. |
title_full | Time-crystalline eigenstate order on a quantum processor. |
title_fullStr | Time-crystalline eigenstate order on a quantum processor. |
title_full_unstemmed | Time-crystalline eigenstate order on a quantum processor. |
title_short | Time-crystalline eigenstate order on a quantum processor. |
title_sort | time crystalline eigenstate order on a quantum processor |
work_keys_str_mv | AT mix timecrystallineeigenstateorderonaquantumprocessor AT ippolitim timecrystallineeigenstateorderonaquantumprocessor AT quintanac timecrystallineeigenstateorderonaquantumprocessor AT greenea timecrystallineeigenstateorderonaquantumprocessor AT chenz timecrystallineeigenstateorderonaquantumprocessor AT grossj timecrystallineeigenstateorderonaquantumprocessor AT arutef timecrystallineeigenstateorderonaquantumprocessor AT aryak timecrystallineeigenstateorderonaquantumprocessor AT atalayaj timecrystallineeigenstateorderonaquantumprocessor AT babbushr timecrystallineeigenstateorderonaquantumprocessor AT bardinjc timecrystallineeigenstateorderonaquantumprocessor AT bassoj timecrystallineeigenstateorderonaquantumprocessor AT bengtssona timecrystallineeigenstateorderonaquantumprocessor AT bilmesa timecrystallineeigenstateorderonaquantumprocessor AT bourassaa timecrystallineeigenstateorderonaquantumprocessor AT brilll timecrystallineeigenstateorderonaquantumprocessor AT broughtonm timecrystallineeigenstateorderonaquantumprocessor AT buckleybb timecrystallineeigenstateorderonaquantumprocessor AT buellda timecrystallineeigenstateorderonaquantumprocessor AT burkettb timecrystallineeigenstateorderonaquantumprocessor AT bushnelln timecrystallineeigenstateorderonaquantumprocessor AT chiarob timecrystallineeigenstateorderonaquantumprocessor AT collinsr timecrystallineeigenstateorderonaquantumprocessor AT courtneyw timecrystallineeigenstateorderonaquantumprocessor AT debroyd timecrystallineeigenstateorderonaquantumprocessor AT demuras timecrystallineeigenstateorderonaquantumprocessor AT derkar timecrystallineeigenstateorderonaquantumprocessor AT dunswortha timecrystallineeigenstateorderonaquantumprocessor AT eppensd timecrystallineeigenstateorderonaquantumprocessor AT ericksonc timecrystallineeigenstateorderonaquantumprocessor AT farhie timecrystallineeigenstateorderonaquantumprocessor AT fowlerag timecrystallineeigenstateorderonaquantumprocessor AT foxenb timecrystallineeigenstateorderonaquantumprocessor AT gidneyc timecrystallineeigenstateorderonaquantumprocessor AT giustinam timecrystallineeigenstateorderonaquantumprocessor AT harriganmp timecrystallineeigenstateorderonaquantumprocessor AT harringtonsd timecrystallineeigenstateorderonaquantumprocessor AT hiltonj timecrystallineeigenstateorderonaquantumprocessor AT hoa timecrystallineeigenstateorderonaquantumprocessor AT hongs timecrystallineeigenstateorderonaquantumprocessor AT huangt timecrystallineeigenstateorderonaquantumprocessor AT huffa timecrystallineeigenstateorderonaquantumprocessor AT hugginswj timecrystallineeigenstateorderonaquantumprocessor AT ioffelb timecrystallineeigenstateorderonaquantumprocessor AT isakovsv timecrystallineeigenstateorderonaquantumprocessor AT ivelandj timecrystallineeigenstateorderonaquantumprocessor AT jeffreye timecrystallineeigenstateorderonaquantumprocessor AT jiangz timecrystallineeigenstateorderonaquantumprocessor AT jonesc timecrystallineeigenstateorderonaquantumprocessor AT kafrid timecrystallineeigenstateorderonaquantumprocessor AT sondhisl timecrystallineeigenstateorderonaquantumprocessor |