Time-crystalline eigenstate order on a quantum processor.

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states<sup>1</sup>. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases<sup>2-8<...

Full description

Bibliographic Details
Main Authors: Mi, X, Ippoliti, M, Quintana, C, Greene, A, Chen, Z, Gross, J, Arute, F, Arya, K, Atalaya, J, Babbush, R, Bardin, JC, Basso, J, Bengtsson, A, Bilmes, A, Bourassa, A, Brill, L, Broughton, M, Buckley, BB, Buell, DA, Burkett, B, Bushnell, N, Chiaro, B, Collins, R, Courtney, W, Debroy, D, Demura, S, Derk, AR, Dunsworth, A, Eppens, D, Erickson, C, Farhi, E, Fowler, AG, Foxen, B, Gidney, C, Giustina, M, Harrigan, MP, Harrington, SD, Hilton, J, Ho, A, Hong, S, Huang, T, Huff, A, Huggins, WJ, Ioffe, LB, Isakov, SV, Iveland, J, Jeffrey, E, Jiang, Z, Jones, C, Kafri, D, Sondhi, SL
Format: Journal article
Language:English
Published: Springer Nature 2021
_version_ 1797106794986733568
author Mi, X
Ippoliti, M
Quintana, C
Greene, A
Chen, Z
Gross, J
Arute, F
Arya, K
Atalaya, J
Babbush, R
Bardin, JC
Basso, J
Bengtsson, A
Bilmes, A
Bourassa, A
Brill, L
Broughton, M
Buckley, BB
Buell, DA
Burkett, B
Bushnell, N
Chiaro, B
Collins, R
Courtney, W
Debroy, D
Demura, S
Derk, AR
Dunsworth, A
Eppens, D
Erickson, C
Farhi, E
Fowler, AG
Foxen, B
Gidney, C
Giustina, M
Harrigan, MP
Harrington, SD
Hilton, J
Ho, A
Hong, S
Huang, T
Huff, A
Huggins, WJ
Ioffe, LB
Isakov, SV
Iveland, J
Jeffrey, E
Jiang, Z
Jones, C
Kafri, D
Sondhi, SL
author_facet Mi, X
Ippoliti, M
Quintana, C
Greene, A
Chen, Z
Gross, J
Arute, F
Arya, K
Atalaya, J
Babbush, R
Bardin, JC
Basso, J
Bengtsson, A
Bilmes, A
Bourassa, A
Brill, L
Broughton, M
Buckley, BB
Buell, DA
Burkett, B
Bushnell, N
Chiaro, B
Collins, R
Courtney, W
Debroy, D
Demura, S
Derk, AR
Dunsworth, A
Eppens, D
Erickson, C
Farhi, E
Fowler, AG
Foxen, B
Gidney, C
Giustina, M
Harrigan, MP
Harrington, SD
Hilton, J
Ho, A
Hong, S
Huang, T
Huff, A
Huggins, WJ
Ioffe, LB
Isakov, SV
Iveland, J
Jeffrey, E
Jiang, Z
Jones, C
Kafri, D
Sondhi, SL
author_sort Mi, X
collection OXFORD
description Quantum many-body systems display rich phase structure in their low-temperature equilibrium states<sup>1</sup>. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases<sup>2-8</sup> that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)<sup>7,9-15</sup>. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order<sup>7,16,17</sup>. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states<sup>7,9,10</sup>. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.
first_indexed 2024-03-07T07:07:32Z
format Journal article
id oxford-uuid:4300d744-943a-4387-b3b8-e91f455c4f15
institution University of Oxford
language English
last_indexed 2024-03-07T07:07:32Z
publishDate 2021
publisher Springer Nature
record_format dspace
spelling oxford-uuid:4300d744-943a-4387-b3b8-e91f455c4f152022-05-20T21:40:57ZTime-crystalline eigenstate order on a quantum processor.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4300d744-943a-4387-b3b8-e91f455c4f15EnglishSymplectic ElementsSpringer Nature2021Mi, XIppoliti, MQuintana, CGreene, AChen, ZGross, JArute, FArya, KAtalaya, JBabbush, RBardin, JCBasso, JBengtsson, ABilmes, ABourassa, ABrill, LBroughton, MBuckley, BBBuell, DABurkett, BBushnell, NChiaro, BCollins, RCourtney, WDebroy, DDemura, SDerk, ARDunsworth, AEppens, DErickson, CFarhi, EFowler, AGFoxen, BGidney, CGiustina, MHarrigan, MPHarrington, SDHilton, JHo, AHong, SHuang, THuff, AHuggins, WJIoffe, LBIsakov, SVIveland, JJeffrey, EJiang, ZJones, CKafri, DSondhi, SLQuantum many-body systems display rich phase structure in their low-temperature equilibrium states<sup>1</sup>. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases<sup>2-8</sup> that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)<sup>7,9-15</sup>. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order<sup>7,16,17</sup>. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states<sup>7,9,10</sup>. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.
spellingShingle Mi, X
Ippoliti, M
Quintana, C
Greene, A
Chen, Z
Gross, J
Arute, F
Arya, K
Atalaya, J
Babbush, R
Bardin, JC
Basso, J
Bengtsson, A
Bilmes, A
Bourassa, A
Brill, L
Broughton, M
Buckley, BB
Buell, DA
Burkett, B
Bushnell, N
Chiaro, B
Collins, R
Courtney, W
Debroy, D
Demura, S
Derk, AR
Dunsworth, A
Eppens, D
Erickson, C
Farhi, E
Fowler, AG
Foxen, B
Gidney, C
Giustina, M
Harrigan, MP
Harrington, SD
Hilton, J
Ho, A
Hong, S
Huang, T
Huff, A
Huggins, WJ
Ioffe, LB
Isakov, SV
Iveland, J
Jeffrey, E
Jiang, Z
Jones, C
Kafri, D
Sondhi, SL
Time-crystalline eigenstate order on a quantum processor.
title Time-crystalline eigenstate order on a quantum processor.
title_full Time-crystalline eigenstate order on a quantum processor.
title_fullStr Time-crystalline eigenstate order on a quantum processor.
title_full_unstemmed Time-crystalline eigenstate order on a quantum processor.
title_short Time-crystalline eigenstate order on a quantum processor.
title_sort time crystalline eigenstate order on a quantum processor
work_keys_str_mv AT mix timecrystallineeigenstateorderonaquantumprocessor
AT ippolitim timecrystallineeigenstateorderonaquantumprocessor
AT quintanac timecrystallineeigenstateorderonaquantumprocessor
AT greenea timecrystallineeigenstateorderonaquantumprocessor
AT chenz timecrystallineeigenstateorderonaquantumprocessor
AT grossj timecrystallineeigenstateorderonaquantumprocessor
AT arutef timecrystallineeigenstateorderonaquantumprocessor
AT aryak timecrystallineeigenstateorderonaquantumprocessor
AT atalayaj timecrystallineeigenstateorderonaquantumprocessor
AT babbushr timecrystallineeigenstateorderonaquantumprocessor
AT bardinjc timecrystallineeigenstateorderonaquantumprocessor
AT bassoj timecrystallineeigenstateorderonaquantumprocessor
AT bengtssona timecrystallineeigenstateorderonaquantumprocessor
AT bilmesa timecrystallineeigenstateorderonaquantumprocessor
AT bourassaa timecrystallineeigenstateorderonaquantumprocessor
AT brilll timecrystallineeigenstateorderonaquantumprocessor
AT broughtonm timecrystallineeigenstateorderonaquantumprocessor
AT buckleybb timecrystallineeigenstateorderonaquantumprocessor
AT buellda timecrystallineeigenstateorderonaquantumprocessor
AT burkettb timecrystallineeigenstateorderonaquantumprocessor
AT bushnelln timecrystallineeigenstateorderonaquantumprocessor
AT chiarob timecrystallineeigenstateorderonaquantumprocessor
AT collinsr timecrystallineeigenstateorderonaquantumprocessor
AT courtneyw timecrystallineeigenstateorderonaquantumprocessor
AT debroyd timecrystallineeigenstateorderonaquantumprocessor
AT demuras timecrystallineeigenstateorderonaquantumprocessor
AT derkar timecrystallineeigenstateorderonaquantumprocessor
AT dunswortha timecrystallineeigenstateorderonaquantumprocessor
AT eppensd timecrystallineeigenstateorderonaquantumprocessor
AT ericksonc timecrystallineeigenstateorderonaquantumprocessor
AT farhie timecrystallineeigenstateorderonaquantumprocessor
AT fowlerag timecrystallineeigenstateorderonaquantumprocessor
AT foxenb timecrystallineeigenstateorderonaquantumprocessor
AT gidneyc timecrystallineeigenstateorderonaquantumprocessor
AT giustinam timecrystallineeigenstateorderonaquantumprocessor
AT harriganmp timecrystallineeigenstateorderonaquantumprocessor
AT harringtonsd timecrystallineeigenstateorderonaquantumprocessor
AT hiltonj timecrystallineeigenstateorderonaquantumprocessor
AT hoa timecrystallineeigenstateorderonaquantumprocessor
AT hongs timecrystallineeigenstateorderonaquantumprocessor
AT huangt timecrystallineeigenstateorderonaquantumprocessor
AT huffa timecrystallineeigenstateorderonaquantumprocessor
AT hugginswj timecrystallineeigenstateorderonaquantumprocessor
AT ioffelb timecrystallineeigenstateorderonaquantumprocessor
AT isakovsv timecrystallineeigenstateorderonaquantumprocessor
AT ivelandj timecrystallineeigenstateorderonaquantumprocessor
AT jeffreye timecrystallineeigenstateorderonaquantumprocessor
AT jiangz timecrystallineeigenstateorderonaquantumprocessor
AT jonesc timecrystallineeigenstateorderonaquantumprocessor
AT kafrid timecrystallineeigenstateorderonaquantumprocessor
AT sondhisl timecrystallineeigenstateorderonaquantumprocessor