Classical to quantum mapping for an unconventional phase transition in a three-dimensional classical dimer model

We study the transition between a Coulomb phase and a dimer crystal observed in numerical simulations of the three-dimensional classical dimer model, by mapping it to a quantum model of bosons in two dimensions. The quantum phase transition that results, from a superfluid to a Mott insulator at frac...

Full description

Bibliographic Details
Main Authors: Powell, S, Chalker, J
Format: Journal article
Language:English
Published: 2009
Description
Summary:We study the transition between a Coulomb phase and a dimer crystal observed in numerical simulations of the three-dimensional classical dimer model, by mapping it to a quantum model of bosons in two dimensions. The quantum phase transition that results, from a superfluid to a Mott insulator at fractional filling, belongs to a class that cannot be described within the Landau-Ginzburg-Wilson paradigm. Using a second mapping, to a dual model of vortices, we show that the long-wavelength physics near the transition is described by a U(1) gauge theory with SU(2) matter fields.