Self-supervised representation learning for ultrasound video
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to collect and can be scarce for medical imaging applica...
主要な著者: | Jaio, J, Droste, R, Drukker, L, Papageorghiou, A, Noble, J |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2020
|
類似資料
-
Self-supervised contrastive video-speech representation learning for ultrasound
著者:: Jiao, J, 等
出版事項: (2020) -
Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos
著者:: Sharma, H, 等
出版事項: (2021) -
Ultrasound image representation learning by modeling sonographer visual attention
著者:: Droste, R, 等
出版事項: (2019) -
Transforming obstetric ultrasound into data science using eye tracking, voice recording, transducer motion and ultrasound video
著者:: Drukker, L, 等
出版事項: (2021) -
Anatomy-aware contrastive representation learning for fetal ultrasound
著者:: Fu, Z, 等
出版事項: (2023)