Self-supervised representation learning for ultrasound video
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to collect and can be scarce for medical imaging applica...
Những tác giả chính: | Jaio, J, Droste, R, Drukker, L, Papageorghiou, A, Noble, J |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
IEEE
2020
|
Những quyển sách tương tự
-
Self-supervised contrastive video-speech representation learning for ultrasound
Bằng: Jiao, J, et al.
Được phát hành: (2020) -
Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos
Bằng: Sharma, H, et al.
Được phát hành: (2021) -
Ultrasound image representation learning by modeling sonographer visual attention
Bằng: Droste, R, et al.
Được phát hành: (2019) -
Transforming obstetric ultrasound into data science using eye tracking, voice recording, transducer motion and ultrasound video
Bằng: Drukker, L, et al.
Được phát hành: (2021) -
Anatomy-aware contrastive representation learning for fetal ultrasound
Bằng: Fu, Z, et al.
Được phát hành: (2023)