Computational fluid dynamics investigation of the flow of trailing edge cooling slots

Slot film cooling is a popular choice for trailing edge cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cut back in the blade pressure side connected through rectangular openings t...

Full description

Bibliographic Details
Main Authors: Jiang, Y, Gurram, N, Romero, E, Ireland, P, Di Mare, L
Format: Journal article
Published: American Society of Mechanical Engineers 2019
_version_ 1826269678768488448
author Jiang, Y
Gurram, N
Romero, E
Ireland, P
Di Mare, L
author_facet Jiang, Y
Gurram, N
Romero, E
Ireland, P
Di Mare, L
author_sort Jiang, Y
collection OXFORD
description Slot film cooling is a popular choice for trailing edge cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cut back in the blade pressure side connected through rectangular openings to the internal coolant feed passage. The numerical simulation of this kind of film cooling flows is challenging due to the presence of flow interactions like step flow separation, coolant-mainstream mixing and heat transfer. The geometry under consideration is a cutback surface at the trailing edge of a constant cross-section aerofoil. The cutback surface is divided into three sections separated by narrow lands. The experiments are conducted in a high speed cascade in Oxford Osney Thermo-Fluids Laboratory at Reynolds and Mach number distributions representative of engine conditions. The capability of CFD methods to capture these flow phenomena is investigated in this paper. The isentropic Mach number and film effectiveness are compared between CFD and pressure sensitive paint (PSP) data. Compared to steady 𝑘 − 𝜔 SST method, Scale Adaptive Simulation (SAS) can agree better with the measurement. Furthermore, the profiles of kinetic energy, production and shear stress obtained by the steady and SAS methods are compared to identify the main source of inaccuracy in RANS simulations. The SAS method is better to capture the unsteady coolant-hot gas mixing and vortex shedding at the slot lip. The cross flow is found to affect the film significantly as it triggers flow separation near the lands and reduces the effectiveness. The film is non-symmetric with respect to the half-span plane and different flow features are present in each slot. The effect of mass flow ratio (MFR) on flow pattern and coolant distribution is also studied. The profiles of velocity, kinetic energy and production of turbulent energy are compared among the slots in detail. The MFR not only affects the magnitude but also changes the sign of production.
first_indexed 2024-03-06T21:28:52Z
format Journal article
id oxford-uuid:43fc5fba-5996-412b-a61b-748410130b75
institution University of Oxford
last_indexed 2024-03-06T21:28:52Z
publishDate 2019
publisher American Society of Mechanical Engineers
record_format dspace
spelling oxford-uuid:43fc5fba-5996-412b-a61b-748410130b752022-03-26T14:59:02ZComputational fluid dynamics investigation of the flow of trailing edge cooling slotsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:43fc5fba-5996-412b-a61b-748410130b75Symplectic Elements at OxfordAmerican Society of Mechanical Engineers2019Jiang, YGurram, NRomero, EIreland, PDi Mare, LSlot film cooling is a popular choice for trailing edge cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cut back in the blade pressure side connected through rectangular openings to the internal coolant feed passage. The numerical simulation of this kind of film cooling flows is challenging due to the presence of flow interactions like step flow separation, coolant-mainstream mixing and heat transfer. The geometry under consideration is a cutback surface at the trailing edge of a constant cross-section aerofoil. The cutback surface is divided into three sections separated by narrow lands. The experiments are conducted in a high speed cascade in Oxford Osney Thermo-Fluids Laboratory at Reynolds and Mach number distributions representative of engine conditions. The capability of CFD methods to capture these flow phenomena is investigated in this paper. The isentropic Mach number and film effectiveness are compared between CFD and pressure sensitive paint (PSP) data. Compared to steady 𝑘 − 𝜔 SST method, Scale Adaptive Simulation (SAS) can agree better with the measurement. Furthermore, the profiles of kinetic energy, production and shear stress obtained by the steady and SAS methods are compared to identify the main source of inaccuracy in RANS simulations. The SAS method is better to capture the unsteady coolant-hot gas mixing and vortex shedding at the slot lip. The cross flow is found to affect the film significantly as it triggers flow separation near the lands and reduces the effectiveness. The film is non-symmetric with respect to the half-span plane and different flow features are present in each slot. The effect of mass flow ratio (MFR) on flow pattern and coolant distribution is also studied. The profiles of velocity, kinetic energy and production of turbulent energy are compared among the slots in detail. The MFR not only affects the magnitude but also changes the sign of production.
spellingShingle Jiang, Y
Gurram, N
Romero, E
Ireland, P
Di Mare, L
Computational fluid dynamics investigation of the flow of trailing edge cooling slots
title Computational fluid dynamics investigation of the flow of trailing edge cooling slots
title_full Computational fluid dynamics investigation of the flow of trailing edge cooling slots
title_fullStr Computational fluid dynamics investigation of the flow of trailing edge cooling slots
title_full_unstemmed Computational fluid dynamics investigation of the flow of trailing edge cooling slots
title_short Computational fluid dynamics investigation of the flow of trailing edge cooling slots
title_sort computational fluid dynamics investigation of the flow of trailing edge cooling slots
work_keys_str_mv AT jiangy computationalfluiddynamicsinvestigationoftheflowoftrailingedgecoolingslots
AT gurramn computationalfluiddynamicsinvestigationoftheflowoftrailingedgecoolingslots
AT romeroe computationalfluiddynamicsinvestigationoftheflowoftrailingedgecoolingslots
AT irelandp computationalfluiddynamicsinvestigationoftheflowoftrailingedgecoolingslots
AT dimarel computationalfluiddynamicsinvestigationoftheflowoftrailingedgecoolingslots