Benchmarking data-driven rainfall-runoff models in Great Britain: a comparison of LSTM-based models with four lumped conceptual models
Long short-term memory (LSTM) models are recurrent neural networks from the field of deep learning (DL) which have shown promise for time series modelling, especially in conditions when data are abundant. Previous studies have demonstrated the applicability of LSTM-based models for rainfall–runoff m...
Үндсэн зохиолчид: | Lees, T, Buechel, M, Anderson, B, Slater, L, Reece, S, Coxon, G, Dadson, SJ |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Copernicus Publications
2021
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
-н: T. Lees, зэрэг
Хэвлэсэн: (2021-10-01) -
Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios
-н: Buechel, M, зэрэг
Хэвлэсэн: (2022) -
Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios
-н: Marcus Buechel, зэрэг
Хэвлэсэн: (2022-01-01) -
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
-н: M. Buechel, зэрэг
Хэвлэсэн: (2024-05-01) -
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
-н: Buechel, M, зэрэг
Хэвлэсэн: (2024)