Isometric immersions and compensated compactness
A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2 which can be realized as isometric immersions into ℝ3. This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differenti...
主要な著者: | Chen, G, Slemrod, M, Wang, D |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2010
|
類似資料
-
WEAK CONTINUITY OF THE GAUSS-CODAZZI-RICCI SYSTEM FOR ISOMETRIC EMBEDDING
著者:: Chen, G, 等
出版事項: (2010) -
A fluid dynamic formulation of the isometric embedding problem in differential geometry
著者:: Chen, G, 等
出版事項: (2010) -
Isometric embedding via strongly symmetric positive systems
著者:: Chen, G, 等
出版事項: (2018) -
Stability of isometric immersions of hypersurfaces
著者:: Itai Alpern, 等
出版事項: (2024-01-01) -
Unique isometric immersion into hyperbolic space
著者:: M. Beltagy
出版事項: (1993-01-01)