Isometric immersions and compensated compactness
A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2 which can be realized as isometric immersions into ℝ3. This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differenti...
Hoofdauteurs: | Chen, G, Slemrod, M, Wang, D |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
2010
|
Gelijkaardige items
-
WEAK CONTINUITY OF THE GAUSS-CODAZZI-RICCI SYSTEM FOR ISOMETRIC EMBEDDING
door: Chen, G, et al.
Gepubliceerd in: (2010) -
A fluid dynamic formulation of the isometric embedding problem in differential geometry
door: Chen, G, et al.
Gepubliceerd in: (2010) -
Isometric embedding via strongly symmetric positive systems
door: Chen, G, et al.
Gepubliceerd in: (2018) -
Stability of isometric immersions of hypersurfaces
door: Itai Alpern, et al.
Gepubliceerd in: (2024-01-01) -
Unique isometric immersion into hyperbolic space
door: M. Beltagy
Gepubliceerd in: (1993-01-01)