UneVEn: Universal value exploration for multi-agent reinforcement learning
VDN and QMIX are two popular value-based algorithms for cooperative MARL that learn a centralized action value function as a monotonic mixing of per-agent utilities. While this enables easy decentralization of the learned policy, the restricted joint action value function can prevent them from solvi...
Asıl Yazarlar: | Gupta, T, Mahajan, A, Peng, B, Boehmer, W, Whiteson, S |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
PMLR
2021
|
Benzer Materyaller
-
Randomized entity-wise factorization for multi-agent reinforcement learning
Yazar:: Iqbal, S, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Multi-agent common knowledge reinforcement learning
Yazar:: de Witt, C, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
MAVEN: Multi-Agent Variational Exploration
Yazar:: Mahajan, A, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
Yazar:: Rashid, T, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Deep residual reinforcement learning
Yazar:: Zhang, S, ve diğerleri
Baskı/Yayın Bilgisi: (2020)