UneVEn: Universal value exploration for multi-agent reinforcement learning
VDN and QMIX are two popular value-based algorithms for cooperative MARL that learn a centralized action value function as a monotonic mixing of per-agent utilities. While this enables easy decentralization of the learned policy, the restricted joint action value function can prevent them from solvi...
Päätekijät: | Gupta, T, Mahajan, A, Peng, B, Boehmer, W, Whiteson, S |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
PMLR
2021
|
Samankaltaisia teoksia
-
Randomized entity-wise factorization for multi-agent reinforcement learning
Tekijä: Iqbal, S, et al.
Julkaistu: (2021) -
Multi-agent common knowledge reinforcement learning
Tekijä: de Witt, C, et al.
Julkaistu: (2019) -
MAVEN: Multi-Agent Variational Exploration
Tekijä: Mahajan, A, et al.
Julkaistu: (2019) -
RODE: learning roles to decompose multi−agent tasks
Tekijä: Wang, T, et al.
Julkaistu: (2021) -
Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
Tekijä: Rashid, T, et al.
Julkaistu: (2020)