A Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound Techniques

The digital image correlation (DIC) and ultrasound techniques have both previously been employed to measure the contact stiffness of real engineering interfaces, but a comprehensive comparison of these techniques has not previously been carried out. Such a comparison is addressed in the present pape...

Full description

Bibliographic Details
Main Authors: Mulvihill, D, Brunskill, H, Kartal, M, Dwyer-Joyce, R, Nowell, D
Format: Journal article
Published: 2013
_version_ 1826270093329301504
author Mulvihill, D
Brunskill, H
Kartal, M
Dwyer-Joyce, R
Nowell, D
author_facet Mulvihill, D
Brunskill, H
Kartal, M
Dwyer-Joyce, R
Nowell, D
author_sort Mulvihill, D
collection OXFORD
description The digital image correlation (DIC) and ultrasound techniques have both previously been employed to measure the contact stiffness of real engineering interfaces, but a comprehensive comparison of these techniques has not previously been carried out. Such a comparison is addressed in the present paper. The principal novelty in this work is that DIC and ultrasound are used to simultaneously measure contact stiffness in the same tests and on the same contact interface. The results show that ultrasound measures somewhat higher contact stiffness magnitudes than DIC: at an average normal contact pressure of 70 MPa, ultrasound was around three times stiffer. Given that the techniques are vastly different in their measurement approach (DIC measures micron-scale relative displacements from external side-on images of the interface, while ultrasound uses the reflection of an Ångstrom scale ultrasonic perturbation from the interior of the interface itself), this level of agreement is thought to be encouraging. The difference in results can partly be explained by consideration of inherent physical differences between the techniques which have previously received little attention. Ultrasound measurement will always give the local elastic 'unloading stiffness' (even at a plastically deforming contact); whereas, a load-deflection technique like DIC, will give the 'loading stiffness'. The reason for this difference is discussed in the paper and tests carried out under increasing tangential load in the pre-sliding regime illustrate this difference experimentally. Under normal loading, the increase in real contact area obscures the effect to some extent as both DIC and ultrasound stiffnesses increase with normal load. The results suggest that rough interfaces may be satisfactorily modelled as a variable stiffness spring whose stiffness increases with contact pressure as the smooth contact case is approached. © 2013 Society for Experimental Mechanics.
first_indexed 2024-03-06T21:35:27Z
format Journal article
id oxford-uuid:461abfc0-1905-447b-96c3-9ed22820f61a
institution University of Oxford
last_indexed 2024-03-06T21:35:27Z
publishDate 2013
record_format dspace
spelling oxford-uuid:461abfc0-1905-447b-96c3-9ed22820f61a2022-03-26T15:11:44ZA Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound TechniquesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:461abfc0-1905-447b-96c3-9ed22820f61aSymplectic Elements at Oxford2013Mulvihill, DBrunskill, HKartal, MDwyer-Joyce, RNowell, DThe digital image correlation (DIC) and ultrasound techniques have both previously been employed to measure the contact stiffness of real engineering interfaces, but a comprehensive comparison of these techniques has not previously been carried out. Such a comparison is addressed in the present paper. The principal novelty in this work is that DIC and ultrasound are used to simultaneously measure contact stiffness in the same tests and on the same contact interface. The results show that ultrasound measures somewhat higher contact stiffness magnitudes than DIC: at an average normal contact pressure of 70 MPa, ultrasound was around three times stiffer. Given that the techniques are vastly different in their measurement approach (DIC measures micron-scale relative displacements from external side-on images of the interface, while ultrasound uses the reflection of an Ångstrom scale ultrasonic perturbation from the interior of the interface itself), this level of agreement is thought to be encouraging. The difference in results can partly be explained by consideration of inherent physical differences between the techniques which have previously received little attention. Ultrasound measurement will always give the local elastic 'unloading stiffness' (even at a plastically deforming contact); whereas, a load-deflection technique like DIC, will give the 'loading stiffness'. The reason for this difference is discussed in the paper and tests carried out under increasing tangential load in the pre-sliding regime illustrate this difference experimentally. Under normal loading, the increase in real contact area obscures the effect to some extent as both DIC and ultrasound stiffnesses increase with normal load. The results suggest that rough interfaces may be satisfactorily modelled as a variable stiffness spring whose stiffness increases with contact pressure as the smooth contact case is approached. © 2013 Society for Experimental Mechanics.
spellingShingle Mulvihill, D
Brunskill, H
Kartal, M
Dwyer-Joyce, R
Nowell, D
A Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound Techniques
title A Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound Techniques
title_full A Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound Techniques
title_fullStr A Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound Techniques
title_full_unstemmed A Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound Techniques
title_short A Comparison of Contact Stiffness Measurements Obtained by the Digital Image Correlation and Ultrasound Techniques
title_sort comparison of contact stiffness measurements obtained by the digital image correlation and ultrasound techniques
work_keys_str_mv AT mulvihilld acomparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT brunskillh acomparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT kartalm acomparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT dwyerjoycer acomparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT nowelld acomparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT mulvihilld comparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT brunskillh comparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT kartalm comparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT dwyerjoycer comparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques
AT nowelld comparisonofcontactstiffnessmeasurementsobtainedbythedigitalimagecorrelationandultrasoundtechniques