The extremal point process of branching brownian motion in Rd

We consider a branching Brownian motion in R d with d ≥ 1 in which the position X (u) t ∈ R d of a particle u at time t can be encoded by its direction θ (u) t ∈ S d−1 and its distance R (u) t to 0. We prove that the extremal point process Pδ (θ (u) t ,R(u) t −m (d) t ) (where the sum is over all pa...

Full description

Bibliographic Details
Main Authors: Berestycki, J, Kim, Y, Zeitouni, O, Mallein, B, Lubetzky, E
Format: Journal article
Language:English
Published: Institute of Mathematical Statistics 2024
_version_ 1811139264773095424
author Berestycki, J
Kim, Y
Zeitouni, O
Mallein, B
Lubetzky, E
author_facet Berestycki, J
Kim, Y
Zeitouni, O
Mallein, B
Lubetzky, E
author_sort Berestycki, J
collection OXFORD
description We consider a branching Brownian motion in R d with d ≥ 1 in which the position X (u) t ∈ R d of a particle u at time t can be encoded by its direction θ (u) t ∈ S d−1 and its distance R (u) t to 0. We prove that the extremal point process Pδ (θ (u) t ,R(u) t −m (d) t ) (where the sum is over all particles alive at time t and m (d) t is an explicit centering term) converges in distribution to a randomly shifted, decorated Poisson point process on S d−1 × R. More precisely, the so-called clan-leaders form a Cox process with intensity proportional to D∞(θ)e − √ 2rdrdθ, where D∞(θ) is the limit of the derivative martingale in direction θ and the decorations are i.i.d. copies of the decoration process of the standard one-dimensional branching Brownian motion. This proves a conjecture of Stasinski, Berestycki and Mallein (Ann. Inst. H. ´ Poincaré 57:1786–1810, 2021). The proof builds on that paper and on Kim, Lubetzky and Zeitouni (Ann. Appl. Prob. 33(2):1315–1368, 2023).
first_indexed 2024-03-07T08:10:53Z
format Journal article
id oxford-uuid:46230786-edb8-49af-8571-f382840786ff
institution University of Oxford
language English
last_indexed 2024-09-25T04:03:20Z
publishDate 2024
publisher Institute of Mathematical Statistics
record_format dspace
spelling oxford-uuid:46230786-edb8-49af-8571-f382840786ff2024-05-17T09:19:03ZThe extremal point process of branching brownian motion in RdJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:46230786-edb8-49af-8571-f382840786ffEnglishSymplectic ElementsInstitute of Mathematical Statistics2024Berestycki, JKim, YZeitouni, OMallein, BLubetzky, EWe consider a branching Brownian motion in R d with d ≥ 1 in which the position X (u) t ∈ R d of a particle u at time t can be encoded by its direction θ (u) t ∈ S d−1 and its distance R (u) t to 0. We prove that the extremal point process Pδ (θ (u) t ,R(u) t −m (d) t ) (where the sum is over all particles alive at time t and m (d) t is an explicit centering term) converges in distribution to a randomly shifted, decorated Poisson point process on S d−1 × R. More precisely, the so-called clan-leaders form a Cox process with intensity proportional to D∞(θ)e − √ 2rdrdθ, where D∞(θ) is the limit of the derivative martingale in direction θ and the decorations are i.i.d. copies of the decoration process of the standard one-dimensional branching Brownian motion. This proves a conjecture of Stasinski, Berestycki and Mallein (Ann. Inst. H. ´ Poincaré 57:1786–1810, 2021). The proof builds on that paper and on Kim, Lubetzky and Zeitouni (Ann. Appl. Prob. 33(2):1315–1368, 2023).
spellingShingle Berestycki, J
Kim, Y
Zeitouni, O
Mallein, B
Lubetzky, E
The extremal point process of branching brownian motion in Rd
title The extremal point process of branching brownian motion in Rd
title_full The extremal point process of branching brownian motion in Rd
title_fullStr The extremal point process of branching brownian motion in Rd
title_full_unstemmed The extremal point process of branching brownian motion in Rd
title_short The extremal point process of branching brownian motion in Rd
title_sort extremal point process of branching brownian motion in rd
work_keys_str_mv AT berestyckij theextremalpointprocessofbranchingbrownianmotioninrd
AT kimy theextremalpointprocessofbranchingbrownianmotioninrd
AT zeitounio theextremalpointprocessofbranchingbrownianmotioninrd
AT malleinb theextremalpointprocessofbranchingbrownianmotioninrd
AT lubetzkye theextremalpointprocessofbranchingbrownianmotioninrd
AT berestyckij extremalpointprocessofbranchingbrownianmotioninrd
AT kimy extremalpointprocessofbranchingbrownianmotioninrd
AT zeitounio extremalpointprocessofbranchingbrownianmotioninrd
AT malleinb extremalpointprocessofbranchingbrownianmotioninrd
AT lubetzkye extremalpointprocessofbranchingbrownianmotioninrd