Categorical model structures

<p>We build a model structure from the simple point of departure of a structured interval in a monoidal category — more generally, a structured cylinder and a structured co-cylinder in a category.</p>

Bibliographic Details
Main Author: Williamson, R
Other Authors: Rouquier, R
Format: Thesis
Language:English
Published: 2011
Subjects:
_version_ 1817932984060215296
author Williamson, R
author2 Rouquier, R
author_facet Rouquier, R
Williamson, R
author_sort Williamson, R
collection OXFORD
description <p>We build a model structure from the simple point of departure of a structured interval in a monoidal category — more generally, a structured cylinder and a structured co-cylinder in a category.</p>
first_indexed 2024-03-06T21:36:27Z
format Thesis
id oxford-uuid:466f4700-7cbf-401c-b0b7-9399b4c840df
institution University of Oxford
language English
last_indexed 2024-12-09T03:46:35Z
publishDate 2011
record_format dspace
spelling oxford-uuid:466f4700-7cbf-401c-b0b7-9399b4c840df2024-12-08T09:05:08ZCategorical model structuresThesishttp://purl.org/coar/resource_type/c_db06uuid:466f4700-7cbf-401c-b0b7-9399b4c840dfAlgebraic topologyMathematicsEnglishOxford University Research Archive - Valet2011Williamson, RRouquier, R<p>We build a model structure from the simple point of departure of a structured interval in a monoidal category — more generally, a structured cylinder and a structured co-cylinder in a category.</p>
spellingShingle Algebraic topology
Mathematics
Williamson, R
Categorical model structures
title Categorical model structures
title_full Categorical model structures
title_fullStr Categorical model structures
title_full_unstemmed Categorical model structures
title_short Categorical model structures
title_sort categorical model structures
topic Algebraic topology
Mathematics
work_keys_str_mv AT williamsonr categoricalmodelstructures