Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported
<h4>Objective</h4> <p>Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model us...
Main Authors: | , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Elsevier
2018
|
_version_ | 1797066159856549888 |
---|---|
author | Whittle, R Peat, G Belcher, J Collins, G Riley, R |
author_facet | Whittle, R Peat, G Belcher, J Collins, G Riley, R |
author_sort | Whittle, R |
collection | OXFORD |
description | <h4>Objective</h4> <p>Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use.</p> <h4>Methods</h4> <p>A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error, and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risks.</p> <h4>Results</h4> <p>Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorized as high risk of error; however, this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured.</p> <h4>Conclusion</h4> <p>Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions.</p> |
first_indexed | 2024-03-06T21:38:25Z |
format | Journal article |
id | oxford-uuid:470f715b-7714-45e1-9b31-8bca0551ea52 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T21:38:25Z |
publishDate | 2018 |
publisher | Elsevier |
record_format | dspace |
spelling | oxford-uuid:470f715b-7714-45e1-9b31-8bca0551ea522022-03-26T15:17:46ZMeasurement error and timing of predictor values for multivariable risk prediction models are poorly reportedJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:470f715b-7714-45e1-9b31-8bca0551ea52EnglishSymplectic Elements at OxfordElsevier2018Whittle, RPeat, GBelcher, JCollins, GRiley, R <h4>Objective</h4> <p>Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use.</p> <h4>Methods</h4> <p>A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error, and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risks.</p> <h4>Results</h4> <p>Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorized as high risk of error; however, this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured.</p> <h4>Conclusion</h4> <p>Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions.</p> |
spellingShingle | Whittle, R Peat, G Belcher, J Collins, G Riley, R Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported |
title | Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported |
title_full | Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported |
title_fullStr | Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported |
title_full_unstemmed | Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported |
title_short | Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported |
title_sort | measurement error and timing of predictor values for multivariable risk prediction models are poorly reported |
work_keys_str_mv | AT whittler measurementerrorandtimingofpredictorvaluesformultivariableriskpredictionmodelsarepoorlyreported AT peatg measurementerrorandtimingofpredictorvaluesformultivariableriskpredictionmodelsarepoorlyreported AT belcherj measurementerrorandtimingofpredictorvaluesformultivariableriskpredictionmodelsarepoorlyreported AT collinsg measurementerrorandtimingofpredictorvaluesformultivariableriskpredictionmodelsarepoorlyreported AT rileyr measurementerrorandtimingofpredictorvaluesformultivariableriskpredictionmodelsarepoorlyreported |