Elucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modeling

Nanocomposites comprising metal–organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devis...

ver descrição completa

Detalhes bibliográficos
Principais autores: Souza, BE, Donà, L, Titov, K, Bruzzese, P, Zeng, Z, Zhang, Y, Babal, AS, Möslein, AF, Frogley, MD, Wolna, M, Cinque, G, Civalleri, B, Tan, J-C
Formato: Journal article
Idioma:English
Publicado em: American Chemical Society 2020
_version_ 1826270376910389248
author Souza, BE
Donà, L
Titov, K
Bruzzese, P
Zeng, Z
Zhang, Y
Babal, AS
Möslein, AF
Frogley, MD
Wolna, M
Cinque, G
Civalleri, B
Tan, J-C
author_facet Souza, BE
Donà, L
Titov, K
Bruzzese, P
Zeng, Z
Zhang, Y
Babal, AS
Möslein, AF
Frogley, MD
Wolna, M
Cinque, G
Civalleri, B
Tan, J-C
author_sort Souza, BE
collection OXFORD
description Nanocomposites comprising metal–organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein, we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.
first_indexed 2024-03-06T21:39:52Z
format Journal article
id oxford-uuid:478b68b3-0f05-4568-bf43-a75f047278f0
institution University of Oxford
language English
last_indexed 2024-03-06T21:39:52Z
publishDate 2020
publisher American Chemical Society
record_format dspace
spelling oxford-uuid:478b68b3-0f05-4568-bf43-a75f047278f02022-03-26T15:20:55ZElucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modelingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:478b68b3-0f05-4568-bf43-a75f047278f0EnglishSymplectic ElementsAmerican Chemical Society2020Souza, BEDonà, LTitov, KBruzzese, PZeng, ZZhang, YBabal, ASMöslein, AFFrogley, MDWolna, MCinque, GCivalleri, BTan, J-CNanocomposites comprising metal–organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein, we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.
spellingShingle Souza, BE
Donà, L
Titov, K
Bruzzese, P
Zeng, Z
Zhang, Y
Babal, AS
Möslein, AF
Frogley, MD
Wolna, M
Cinque, G
Civalleri, B
Tan, J-C
Elucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modeling
title Elucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modeling
title_full Elucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modeling
title_fullStr Elucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modeling
title_full_unstemmed Elucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modeling
title_short Elucidating the drug release from metal–organic framework nanocomposites via In situ synchrotron microspectroscopy and theoretical modeling
title_sort elucidating the drug release from metal organic framework nanocomposites via in situ synchrotron microspectroscopy and theoretical modeling
work_keys_str_mv AT souzabe elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT donal elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT titovk elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT bruzzesep elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT zengz elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT zhangy elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT babalas elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT mosleinaf elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT frogleymd elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT wolnam elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT cinqueg elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT civallerib elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling
AT tanjc elucidatingthedrugreleasefrommetalorganicframeworknanocompositesviainsitusynchrotronmicrospectroscopyandtheoreticalmodeling