C3DPO: Canonical 3D pose networks for non-rigid structure from motion
We propose C3DPO, a method for extracting 3D models of deformable objects from 2D keypoint annotations in unconstrained images. We do so by learning a deep network that reconstructs a 3D object from a single view at a time, accounting for partial occlusions, and explicitly factoring the effects of v...
Những tác giả chính: | Novotny, D, Ravi, N, Graham, B, Neverova, N, Vedaldi, A |
---|---|
Định dạng: | Conference item |
Được phát hành: |
2020
|
Những quyển sách tương tự
-
DensePose 3D: lifting canonical surface maps of articulated objects to the third dimension
Bằng: Shapovalov, R, et al.
Được phát hành: (2022) -
Canonical 3D Deformer Maps: unifying parametric and non-parametric methods for dense weakly-supervised category reconstruction
Bằng: Novotny, D, et al.
Được phát hành: (2020) -
Discovering relationships between object categories via universal canonical maps
Bằng: Neverova, N, et al.
Được phát hành: (2021) -
Slim DensePose: Thrifty learning from sparse annotations and motion cues
Bằng: Neverova, N, et al.
Được phát hành: (2020) -
Investigating pose representations and motion contexts modeling for 3D motion prediction
Bằng: Liu, Zhenguang, et al.
Được phát hành: (2022)