Integrated phase-change photonic devices and systems
Driven by the rapid rise of silicon photonics, optical signaling is moving from the realm of long-distance communications to chip-to-chip, and even on-chip domains. If on-chip signaling becomes optical, we should consider what more we might do with light than just communicate. We might, for example,...
Main Authors: | , , |
---|---|
Format: | Journal article |
Published: |
Cambridge University Press
2019
|
_version_ | 1797066452703903744 |
---|---|
author | Wright, C Bhaskaran, H Pernice, W |
author_facet | Wright, C Bhaskaran, H Pernice, W |
author_sort | Wright, C |
collection | OXFORD |
description | Driven by the rapid rise of silicon photonics, optical signaling is moving from the realm of long-distance communications to chip-to-chip, and even on-chip domains. If on-chip signaling becomes optical, we should consider what more we might do with light than just communicate. We might, for example, set goals for the storing and processing of information directly in the optical domain. Doing this might enable us to supplement, or even surpass, the performance of electronic processors, by exploiting the ultrahigh bandwidth and wavelength division multiplexing capabilities offered by optics. In this article, we show how, by using an integrated photonics platform that embeds chalcogenide phase-change materials into standard silicon photonics circuits, we can achieve some of these goals. Specifically, we show that a phase-change integrated photonics platform can deliver binary and multilevel memory, arithmetic and logic processing, as well as synaptic and neuronal mimics for use in neuromorphic, or brain-like, computing-all working directly in the optical domain. |
first_indexed | 2024-03-06T21:42:17Z |
format | Journal article |
id | oxford-uuid:4858b6ee-f8f9-46b2-8e55-9299995d1805 |
institution | University of Oxford |
last_indexed | 2024-03-06T21:42:17Z |
publishDate | 2019 |
publisher | Cambridge University Press |
record_format | dspace |
spelling | oxford-uuid:4858b6ee-f8f9-46b2-8e55-9299995d18052022-03-26T15:25:13ZIntegrated phase-change photonic devices and systemsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4858b6ee-f8f9-46b2-8e55-9299995d1805Symplectic Elements at OxfordCambridge University Press2019Wright, CBhaskaran, HPernice, WDriven by the rapid rise of silicon photonics, optical signaling is moving from the realm of long-distance communications to chip-to-chip, and even on-chip domains. If on-chip signaling becomes optical, we should consider what more we might do with light than just communicate. We might, for example, set goals for the storing and processing of information directly in the optical domain. Doing this might enable us to supplement, or even surpass, the performance of electronic processors, by exploiting the ultrahigh bandwidth and wavelength division multiplexing capabilities offered by optics. In this article, we show how, by using an integrated photonics platform that embeds chalcogenide phase-change materials into standard silicon photonics circuits, we can achieve some of these goals. Specifically, we show that a phase-change integrated photonics platform can deliver binary and multilevel memory, arithmetic and logic processing, as well as synaptic and neuronal mimics for use in neuromorphic, or brain-like, computing-all working directly in the optical domain. |
spellingShingle | Wright, C Bhaskaran, H Pernice, W Integrated phase-change photonic devices and systems |
title | Integrated phase-change photonic devices and systems |
title_full | Integrated phase-change photonic devices and systems |
title_fullStr | Integrated phase-change photonic devices and systems |
title_full_unstemmed | Integrated phase-change photonic devices and systems |
title_short | Integrated phase-change photonic devices and systems |
title_sort | integrated phase change photonic devices and systems |
work_keys_str_mv | AT wrightc integratedphasechangephotonicdevicesandsystems AT bhaskaranh integratedphasechangephotonicdevicesandsystems AT pernicew integratedphasechangephotonicdevicesandsystems |