The onset of zonal modes in two-dimensional Rayleigh–Bénard convection

<p>We study the stability of steady convection rolls in two-dimensional Rayleigh&ndash;B&eacute;nard convection with free-slip boundaries and horizontal periodicity over 12 orders of magnitude in the Prandtl number&nbsp;<span data-mathjax-type="texmath"><span tab...

Полное описание

Библиографические подробности
Главные авторы: Winchester, P, Howell, PD, Dallas, V
Формат: Journal article
Язык:English
Опубликовано: Cambridge University Press 2022
_version_ 1826308446537908224
author Winchester, P
Howell, PD
Dallas, V
author_facet Winchester, P
Howell, PD
Dallas, V
author_sort Winchester, P
collection OXFORD
description <p>We study the stability of steady convection rolls in two-dimensional Rayleigh&ndash;B&eacute;nard convection with free-slip boundaries and horizontal periodicity over 12 orders of magnitude in the Prandtl number&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msup&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;">(10&minus;6&le;Pr&le;106)(10&minus;6&le;Pr&le;106)</span></span>&nbsp;and 6 orders of magnitude in the Rayleigh number&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mi&gt;&amp;#x03C0;&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/msup&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/msup&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;">(8&pi;4&lt;Ra&le;108)(8&pi;4&lt;Ra&le;108)</span></span>. The analysis is facilitated by partitioning our modal expansion into so-called even and odd modes. With aspect ratio&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;&amp;#x0393;&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;">&Gamma;=2&Gamma;=2</span></span>, we observe that zonal modes (with horizontal wavenumber equal to zero) can emerge only once the steady convection roll state consisting of even modes only becomes unstable to odd perturbations. We determine the stability boundary in the&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;">(Pr,Ra)(Pr,Ra)</span></span>&nbsp;plane and observe remarkably intricate features corresponding to qualitative changes in the solution, as well as three regions where the steady convection rolls lose and subsequently regain stability as the Rayleigh number is increased. We study the asymptotic limit&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x2192;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;">Pr&rarr;0Pr&rarr;0</span></span>&nbsp;and find that the steady convection rolls become unstable almost instantaneously, eventually leading to nonlinear relaxation osculations and bursts, which we can explain with a weakly nonlinear analysis. In the complementary large-<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;">PrPr</span></span>&nbsp;limit, we observe that the zonal modes at the instability switch off abruptly at a large, but finite, Prandtl number.</p>
first_indexed 2024-03-07T07:19:37Z
format Journal article
id oxford-uuid:4865d4ea-a07c-4161-ad4f-4afbbfb218e9
institution University of Oxford
language English
last_indexed 2024-03-07T07:19:37Z
publishDate 2022
publisher Cambridge University Press
record_format dspace
spelling oxford-uuid:4865d4ea-a07c-4161-ad4f-4afbbfb218e92022-09-23T10:29:15ZThe onset of zonal modes in two-dimensional Rayleigh–Bénard convectionJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4865d4ea-a07c-4161-ad4f-4afbbfb218e9EnglishSymplectic ElementsCambridge University Press2022Winchester, PHowell, PDDallas, V<p>We study the stability of steady convection rolls in two-dimensional Rayleigh&ndash;B&eacute;nard convection with free-slip boundaries and horizontal periodicity over 12 orders of magnitude in the Prandtl number&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msup&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;">(10&minus;6&le;Pr&le;106)(10&minus;6&le;Pr&le;106)</span></span>&nbsp;and 6 orders of magnitude in the Rayleigh number&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mi&gt;&amp;#x03C0;&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/msup&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/msup&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;">(8&pi;4&lt;Ra&le;108)(8&pi;4&lt;Ra&le;108)</span></span>. The analysis is facilitated by partitioning our modal expansion into so-called even and odd modes. With aspect ratio&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;&amp;#x0393;&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;">&Gamma;=2&Gamma;=2</span></span>, we observe that zonal modes (with horizontal wavenumber equal to zero) can emerge only once the steady convection roll state consisting of even modes only becomes unstable to odd perturbations. We determine the stability boundary in the&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;/math&gt;">(Pr,Ra)(Pr,Ra)</span></span>&nbsp;plane and observe remarkably intricate features corresponding to qualitative changes in the solution, as well as three regions where the steady convection rolls lose and subsequently regain stability as the Rayleigh number is increased. We study the asymptotic limit&nbsp;<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x2192;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;">Pr&rarr;0Pr&rarr;0</span></span>&nbsp;and find that the steady convection rolls become unstable almost instantaneously, eventually leading to nonlinear relaxation osculations and bursts, which we can explain with a weakly nonlinear analysis. In the complementary large-<span data-mathjax-type="texmath"><span tabindex="0" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;">PrPr</span></span>&nbsp;limit, we observe that the zonal modes at the instability switch off abruptly at a large, but finite, Prandtl number.</p>
spellingShingle Winchester, P
Howell, PD
Dallas, V
The onset of zonal modes in two-dimensional Rayleigh–Bénard convection
title The onset of zonal modes in two-dimensional Rayleigh–Bénard convection
title_full The onset of zonal modes in two-dimensional Rayleigh–Bénard convection
title_fullStr The onset of zonal modes in two-dimensional Rayleigh–Bénard convection
title_full_unstemmed The onset of zonal modes in two-dimensional Rayleigh–Bénard convection
title_short The onset of zonal modes in two-dimensional Rayleigh–Bénard convection
title_sort onset of zonal modes in two dimensional rayleigh benard convection
work_keys_str_mv AT winchesterp theonsetofzonalmodesintwodimensionalrayleighbenardconvection
AT howellpd theonsetofzonalmodesintwodimensionalrayleighbenardconvection
AT dallasv theonsetofzonalmodesintwodimensionalrayleighbenardconvection
AT winchesterp onsetofzonalmodesintwodimensionalrayleighbenardconvection
AT howellpd onsetofzonalmodesintwodimensionalrayleighbenardconvection
AT dallasv onsetofzonalmodesintwodimensionalrayleighbenardconvection