Learning and filtering via simulation: smoothly jittered particle filters.
A key ingredient of many particle filters is the use of the sampling importance resampling algorithm (SIR), which transforms a sample of weighted draws from a prior distribution into equally weighted draws from a posterior distribution. We give a novel analysis of the SIR algorithm and analyse the...
主要な著者: | Flury, T, Shephard, N |
---|---|
フォーマット: | Working paper |
言語: | English |
出版事項: |
Department of Economics (University of Oxford)
2009
|
類似資料
-
Learning and filtering via simulation: smoothly jittered particle filters
著者:: Shephard, N, 等
出版事項: (2009) -
Filtering via Simulation: Auxiliary Particle Filters.
著者:: Pitt, M, 等
出版事項: (1999) -
Filtering via simulation: auxiliary particle filters.
著者:: Pitt, M, 等
出版事項: (1997) -
Filtering via simulation: auxiliary particle filters
著者:: Pitt, M, 等
出版事項: (1999) -
Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models.
著者:: Flury, T, 等
出版事項: (2008)