Learning and filtering via simulation: smoothly jittered particle filters.
A key ingredient of many particle filters is the use of the sampling importance resampling algorithm (SIR), which transforms a sample of weighted draws from a prior distribution into equally weighted draws from a posterior distribution. We give a novel analysis of the SIR algorithm and analyse the...
Главные авторы: | Flury, T, Shephard, N |
---|---|
Формат: | Working paper |
Язык: | English |
Опубликовано: |
Department of Economics (University of Oxford)
2009
|
Схожие документы
-
Learning and filtering via simulation: smoothly jittered particle filters
по: Shephard, N, и др.
Опубликовано: (2009) -
Filtering via Simulation: Auxiliary Particle Filters.
по: Pitt, M, и др.
Опубликовано: (1999) -
Filtering via simulation: auxiliary particle filters.
по: Pitt, M, и др.
Опубликовано: (1997) -
Filtering via simulation: auxiliary particle filters
по: Pitt, M, и др.
Опубликовано: (1999) -
Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models.
по: Flury, T, и др.
Опубликовано: (2008)