Sampling and inference for beta neutral-to-the-left models of sparse networks
Empirical evidence suggests that heavy-tailed degree distributions occurring in many real networks are well-approximated by power laws with exponents η that may take values either less than and greater than two. Models based on various forms of exchangeability are able to capture power laws with η &...
Asıl Yazarlar: | Bloem-Reddy, B, Foster, A, Mathieu, E, Teh, Y |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
AUAI Press
2018
|
Benzer Materyaller
-
Probabilistic symmetries and invariant neural networks
Yazar:: Bloem-Reddy, B, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Inference for High-Dimensional Sparse Econometric Models
Yazar:: Belloni, Alexandre, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Fast Bayesian inference of Sparse Networks with automatic sparsity determination
Yazar:: Yu, Hang, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
TorchSparse++: Efficient Training and Inference Framework for Sparse Convolution on GPUs
Yazar:: Tang, Haotian, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Unlimited Sampling of Sparse Signals
Yazar:: Bhandari, Ayush, ve diğerleri
Baskı/Yayın Bilgisi: (2021)