Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations

We study the convergence to equilibrium of the mean field PDE associated with the derivative-free methodologies for solving inverse problems that are presented by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41), Herty and Visconti (2018 arXiv:1811.09387). We show stability estimates in...

Full description

Bibliographic Details
Main Authors: Carrillo, JA, Vaes, U
Format: Journal article
Language:English
Published: IOP Publishing 2021
_version_ 1797066676627308544
author Carrillo, JA
Vaes, U
author_facet Carrillo, JA
Vaes, U
author_sort Carrillo, JA
collection OXFORD
description We study the convergence to equilibrium of the mean field PDE associated with the derivative-free methodologies for solving inverse problems that are presented by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41), Herty and Visconti (2018 arXiv:1811.09387). We show stability estimates in the Euclidean Wasserstein distance for the mean field PDE by using optimal transport arguments. As a consequence, this recovers the convergence towards equilibrium estimates by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41) in the case of a linear forward model.
first_indexed 2024-03-06T21:45:26Z
format Journal article
id oxford-uuid:496a0591-90de-472a-94c5-b8765ecac5fb
institution University of Oxford
language English
last_indexed 2024-03-06T21:45:26Z
publishDate 2021
publisher IOP Publishing
record_format dspace
spelling oxford-uuid:496a0591-90de-472a-94c5-b8765ecac5fb2022-03-26T15:31:27ZWasserstein stability estimates for covariance-preconditioned Fokker–Planck equationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:496a0591-90de-472a-94c5-b8765ecac5fbEnglishSymplectic ElementsIOP Publishing2021Carrillo, JAVaes, UWe study the convergence to equilibrium of the mean field PDE associated with the derivative-free methodologies for solving inverse problems that are presented by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41), Herty and Visconti (2018 arXiv:1811.09387). We show stability estimates in the Euclidean Wasserstein distance for the mean field PDE by using optimal transport arguments. As a consequence, this recovers the convergence towards equilibrium estimates by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41) in the case of a linear forward model.
spellingShingle Carrillo, JA
Vaes, U
Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations
title Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations
title_full Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations
title_fullStr Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations
title_full_unstemmed Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations
title_short Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations
title_sort wasserstein stability estimates for covariance preconditioned fokker planck equations
work_keys_str_mv AT carrilloja wassersteinstabilityestimatesforcovariancepreconditionedfokkerplanckequations
AT vaesu wassersteinstabilityestimatesforcovariancepreconditionedfokkerplanckequations