Next steps: learning a disentangled gait representation for versatile quadruped locomotion
Quadruped locomotion is rapidly maturing to a degree where robots now routinely traverse a variety of unstructured terrains. However, while gaits can be varied typically by selecting from a range of pre-computed styles, current planners are unable to vary key gait parameters continuously while the r...
Hlavní autoři: | Mitchell, AL, Merkt, W, Geisert, M, Gangapurwala, S, Engelcke, M, Parker Jones, O, Havoutis, I, Posner, H |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2022
|
Podobné jednotky
-
VAE-Loco: versatile quadruped locomotion by learning a disentangled gait representation
Autor: Mitchell, AL, a další
Vydáno: (2023) -
First steps: latent-space control with semantic constraints for quadruped locomotion
Autor: Mitchell, AL, a další
Vydáno: (2021) -
Learning an expert skill-space for replanning dynamic quadruped locomotion over obstacles
Autor: Surovik, D, a další
Vydáno: (2021) -
Learning and deploying robust locomotion policies with minimal dynamics randomization
Autor: Campanaro, L, a další
Vydáno: (2024) -
Real-time trajectory adaptation for quadrupedal locomotion using deep reinforcement learning
Autor: Gangapurwala, S, a další
Vydáno: (2021)