Robust quantum compilation and circuit optimisation via energy minimisation
We explore a method for automatically recompiling a quantum circuit $\mathcal{A}$ into a target circuit $\mathcal{B}$, with the goal that both circuits have the same action on a specific input i.e. $\mathcal{B |in⟩}$ = $\mathcal{A |in⟩}$. This is of particular relevance to hybrid, NISQ-era algorithm...
Main Authors: | , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2022
|
_version_ | 1797106797608173568 |
---|---|
author | Jones, T Benjamin, SC |
author_facet | Jones, T Benjamin, SC |
author_sort | Jones, T |
collection | OXFORD |
description | We explore a method for automatically recompiling a quantum circuit $\mathcal{A}$ into a target circuit $\mathcal{B}$, with the goal that both circuits have the same action on a specific input i.e. $\mathcal{B |in⟩}$ = $\mathcal{A |in⟩}$. This is of particular relevance to hybrid, NISQ-era algorithms for dynamical simulation or eigensolving. The user initially specifies $\mathcal{B}$ as a blank template: A layout of parameterised unitary gates configured to the identity. The compilation then proceeds using quantum hardware to perform an isomorphic energy-minimisation task, and an optional gate elimination phase to compress the circuit. If $\mathcal{B}$ is insufficient for perfect recompilation then the method will result in an approximate solution. We optimise using imaginary time evolution, and a recent extension of quantum natural gradient for noisy settings. We successfully recompile a <b>7</b>-qubit circuit involving <b>186</b> gates of multiple types into an alternative form with a different topology, far fewer twoqubit gates, and a smaller family of gate types. Moreover we verify that the process is <i><b>robust</b></i>, finding that per-gate noise of up to <b>1%</b> can still yield near-perfect recompilation. We test the scaling of our algorithm on up to <b>20</b> qubits, recompiling into circuits with up to <b>400</b> parameterized gates, and incorporate a custom adaptive timestep technique. We note that a classical simulation of the process can be useful to optimise circuits for today's prototypes, and more generally the method may enable 'blind' compilation i.e. harnessing a device whose response to control parameters is deterministic but unknown. |
first_indexed | 2024-03-07T07:07:33Z |
format | Journal article |
id | oxford-uuid:4a96e169-c1b9-43ac-9fdf-2c91c3d676cd |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T07:07:33Z |
publishDate | 2022 |
publisher | Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
record_format | dspace |
spelling | oxford-uuid:4a96e169-c1b9-43ac-9fdf-2c91c3d676cd2022-05-16T12:38:57ZRobust quantum compilation and circuit optimisation via energy minimisationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4a96e169-c1b9-43ac-9fdf-2c91c3d676cdEnglishSymplectic Elements Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften2022Jones, TBenjamin, SCWe explore a method for automatically recompiling a quantum circuit $\mathcal{A}$ into a target circuit $\mathcal{B}$, with the goal that both circuits have the same action on a specific input i.e. $\mathcal{B |in⟩}$ = $\mathcal{A |in⟩}$. This is of particular relevance to hybrid, NISQ-era algorithms for dynamical simulation or eigensolving. The user initially specifies $\mathcal{B}$ as a blank template: A layout of parameterised unitary gates configured to the identity. The compilation then proceeds using quantum hardware to perform an isomorphic energy-minimisation task, and an optional gate elimination phase to compress the circuit. If $\mathcal{B}$ is insufficient for perfect recompilation then the method will result in an approximate solution. We optimise using imaginary time evolution, and a recent extension of quantum natural gradient for noisy settings. We successfully recompile a <b>7</b>-qubit circuit involving <b>186</b> gates of multiple types into an alternative form with a different topology, far fewer twoqubit gates, and a smaller family of gate types. Moreover we verify that the process is <i><b>robust</b></i>, finding that per-gate noise of up to <b>1%</b> can still yield near-perfect recompilation. We test the scaling of our algorithm on up to <b>20</b> qubits, recompiling into circuits with up to <b>400</b> parameterized gates, and incorporate a custom adaptive timestep technique. We note that a classical simulation of the process can be useful to optimise circuits for today's prototypes, and more generally the method may enable 'blind' compilation i.e. harnessing a device whose response to control parameters is deterministic but unknown. |
spellingShingle | Jones, T Benjamin, SC Robust quantum compilation and circuit optimisation via energy minimisation |
title | Robust quantum compilation and circuit optimisation via energy minimisation |
title_full | Robust quantum compilation and circuit optimisation via energy minimisation |
title_fullStr | Robust quantum compilation and circuit optimisation via energy minimisation |
title_full_unstemmed | Robust quantum compilation and circuit optimisation via energy minimisation |
title_short | Robust quantum compilation and circuit optimisation via energy minimisation |
title_sort | robust quantum compilation and circuit optimisation via energy minimisation |
work_keys_str_mv | AT jonest robustquantumcompilationandcircuitoptimisationviaenergyminimisation AT benjaminsc robustquantumcompilationandcircuitoptimisationviaenergyminimisation |