Robust quantum compilation and circuit optimisation via energy minimisation

We explore a method for automatically recompiling a quantum circuit $\mathcal{A}$ into a target circuit $\mathcal{B}$, with the goal that both circuits have the same action on a specific input i.e. $\mathcal{B |in⟩}$ = $\mathcal{A |in⟩}$. This is of particular relevance to hybrid, NISQ-era algorithm...

Full description

Bibliographic Details
Main Authors: Jones, T, Benjamin, SC
Format: Journal article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2022
_version_ 1797106797608173568
author Jones, T
Benjamin, SC
author_facet Jones, T
Benjamin, SC
author_sort Jones, T
collection OXFORD
description We explore a method for automatically recompiling a quantum circuit $\mathcal{A}$ into a target circuit $\mathcal{B}$, with the goal that both circuits have the same action on a specific input i.e. $\mathcal{B |in⟩}$ = $\mathcal{A |in⟩}$. This is of particular relevance to hybrid, NISQ-era algorithms for dynamical simulation or eigensolving. The user initially specifies $\mathcal{B}$ as a blank template: A layout of parameterised unitary gates configured to the identity. The compilation then proceeds using quantum hardware to perform an isomorphic energy-minimisation task, and an optional gate elimination phase to compress the circuit. If $\mathcal{B}$ is insufficient for perfect recompilation then the method will result in an approximate solution. We optimise using imaginary time evolution, and a recent extension of quantum natural gradient for noisy settings. We successfully recompile a <b>7</b>-qubit circuit involving <b>186</b> gates of multiple types into an alternative form with a different topology, far fewer twoqubit gates, and a smaller family of gate types. Moreover we verify that the process is <i><b>robust</b></i>, finding that per-gate noise of up to <b>1%</b> can still yield near-perfect recompilation. We test the scaling of our algorithm on up to <b>20</b> qubits, recompiling into circuits with up to <b>400</b> parameterized gates, and incorporate a custom adaptive timestep technique. We note that a classical simulation of the process can be useful to optimise circuits for today's prototypes, and more generally the method may enable 'blind' compilation i.e. harnessing a device whose response to control parameters is deterministic but unknown.
first_indexed 2024-03-07T07:07:33Z
format Journal article
id oxford-uuid:4a96e169-c1b9-43ac-9fdf-2c91c3d676cd
institution University of Oxford
language English
last_indexed 2024-03-07T07:07:33Z
publishDate 2022
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
record_format dspace
spelling oxford-uuid:4a96e169-c1b9-43ac-9fdf-2c91c3d676cd2022-05-16T12:38:57ZRobust quantum compilation and circuit optimisation via energy minimisationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4a96e169-c1b9-43ac-9fdf-2c91c3d676cdEnglishSymplectic Elements Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften2022Jones, TBenjamin, SCWe explore a method for automatically recompiling a quantum circuit $\mathcal{A}$ into a target circuit $\mathcal{B}$, with the goal that both circuits have the same action on a specific input i.e. $\mathcal{B |in⟩}$ = $\mathcal{A |in⟩}$. This is of particular relevance to hybrid, NISQ-era algorithms for dynamical simulation or eigensolving. The user initially specifies $\mathcal{B}$ as a blank template: A layout of parameterised unitary gates configured to the identity. The compilation then proceeds using quantum hardware to perform an isomorphic energy-minimisation task, and an optional gate elimination phase to compress the circuit. If $\mathcal{B}$ is insufficient for perfect recompilation then the method will result in an approximate solution. We optimise using imaginary time evolution, and a recent extension of quantum natural gradient for noisy settings. We successfully recompile a <b>7</b>-qubit circuit involving <b>186</b> gates of multiple types into an alternative form with a different topology, far fewer twoqubit gates, and a smaller family of gate types. Moreover we verify that the process is <i><b>robust</b></i>, finding that per-gate noise of up to <b>1%</b> can still yield near-perfect recompilation. We test the scaling of our algorithm on up to <b>20</b> qubits, recompiling into circuits with up to <b>400</b> parameterized gates, and incorporate a custom adaptive timestep technique. We note that a classical simulation of the process can be useful to optimise circuits for today's prototypes, and more generally the method may enable 'blind' compilation i.e. harnessing a device whose response to control parameters is deterministic but unknown.
spellingShingle Jones, T
Benjamin, SC
Robust quantum compilation and circuit optimisation via energy minimisation
title Robust quantum compilation and circuit optimisation via energy minimisation
title_full Robust quantum compilation and circuit optimisation via energy minimisation
title_fullStr Robust quantum compilation and circuit optimisation via energy minimisation
title_full_unstemmed Robust quantum compilation and circuit optimisation via energy minimisation
title_short Robust quantum compilation and circuit optimisation via energy minimisation
title_sort robust quantum compilation and circuit optimisation via energy minimisation
work_keys_str_mv AT jonest robustquantumcompilationandcircuitoptimisationviaenergyminimisation
AT benjaminsc robustquantumcompilationandcircuitoptimisationviaenergyminimisation