The differences between consecutive primes, V

We show that ∑ pn≤x pn+1−pn≥ √ pn (pn+1−pn)≪εx3/5+ε or any fixed ε>0⁠. This improves a result of Matomäki, in which the exponent was 2/3⁠.

Détails bibliographiques
Auteur principal: Heath-Brown, D
Format: Journal article
Langue:English
Publié: Oxford University Press 2019
Description
Résumé:We show that ∑ pn≤x pn+1−pn≥ √ pn (pn+1−pn)≪εx3/5+ε or any fixed ε>0⁠. This improves a result of Matomäki, in which the exponent was 2/3⁠.