Investigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 K

The reduction of oxygen was studied over a range of temperatures (298-318 K) in n -hexyltrietliylammonium bis(trifluorometlianesulfonyl)imide, [N 6,2,2,2] [NTf2], and 1-butyl-2,3-methylimidazorium bis(trifluoromethanesulfonyl)imide, [Qdmim] [NTf2] on both gold and platinum microdisk electrodes, and...

Full description

Bibliographic Details
Main Authors: Rogers, E, Huang, X, Dickinson, E, Hardacre, C, Compton, R
Format: Journal article
Language:English
Published: 2009
_version_ 1797067022949941248
author Rogers, E
Huang, X
Dickinson, E
Hardacre, C
Compton, R
author_facet Rogers, E
Huang, X
Dickinson, E
Hardacre, C
Compton, R
author_sort Rogers, E
collection OXFORD
description The reduction of oxygen was studied over a range of temperatures (298-318 K) in n -hexyltrietliylammonium bis(trifluorometlianesulfonyl)imide, [N 6,2,2,2] [NTf2], and 1-butyl-2,3-methylimidazorium bis(trifluoromethanesulfonyl)imide, [Qdmim] [NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical, step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential., transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N6,2,2,2][NTf2], and an ECrev process for [Qdmim J[NTf2], with the chemical, step involving the reversible formation of the O2-⋯ [C4dmim] - ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N6,2,2,2] [NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C 4dmim] [NTf2] the O2- ⋯ predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an EC16V quantitatively describes the reduction of oxygen on Pt also. © 2009 American Chemical Society.
first_indexed 2024-03-06T21:50:21Z
format Journal article
id oxford-uuid:4b08de3f-9aa9-4400-b0b2-bf5e196577ef
institution University of Oxford
language English
last_indexed 2024-03-06T21:50:21Z
publishDate 2009
record_format dspace
spelling oxford-uuid:4b08de3f-9aa9-4400-b0b2-bf5e196577ef2022-03-26T15:41:12ZInvestigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 KJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4b08de3f-9aa9-4400-b0b2-bf5e196577efEnglishSymplectic Elements at Oxford2009Rogers, EHuang, XDickinson, EHardacre, CCompton, RThe reduction of oxygen was studied over a range of temperatures (298-318 K) in n -hexyltrietliylammonium bis(trifluorometlianesulfonyl)imide, [N 6,2,2,2] [NTf2], and 1-butyl-2,3-methylimidazorium bis(trifluoromethanesulfonyl)imide, [Qdmim] [NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical, step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential., transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N6,2,2,2][NTf2], and an ECrev process for [Qdmim J[NTf2], with the chemical, step involving the reversible formation of the O2-⋯ [C4dmim] - ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N6,2,2,2] [NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C 4dmim] [NTf2] the O2- ⋯ predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an EC16V quantitatively describes the reduction of oxygen on Pt also. © 2009 American Chemical Society.
spellingShingle Rogers, E
Huang, X
Dickinson, E
Hardacre, C
Compton, R
Investigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 K
title Investigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 K
title_full Investigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 K
title_fullStr Investigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 K
title_full_unstemmed Investigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 K
title_short Investigating the Mechanism and Electrode Kinetics of the Oxygen|Superoxide (O2|O2•−) Couple in Various Room-Temperature Ionic Liquids at Gold and Platinum Electrodes in the Temperature Range 298−318 K
title_sort investigating the mechanism and electrode kinetics of the oxygen superoxide o2 o2• couple in various room temperature ionic liquids at gold and platinum electrodes in the temperature range 298 318 k
work_keys_str_mv AT rogerse investigatingthemechanismandelectrodekineticsoftheoxygensuperoxideo2o2coupleinvariousroomtemperatureionicliquidsatgoldandplatinumelectrodesinthetemperaturerange298318k
AT huangx investigatingthemechanismandelectrodekineticsoftheoxygensuperoxideo2o2coupleinvariousroomtemperatureionicliquidsatgoldandplatinumelectrodesinthetemperaturerange298318k
AT dickinsone investigatingthemechanismandelectrodekineticsoftheoxygensuperoxideo2o2coupleinvariousroomtemperatureionicliquidsatgoldandplatinumelectrodesinthetemperaturerange298318k
AT hardacrec investigatingthemechanismandelectrodekineticsoftheoxygensuperoxideo2o2coupleinvariousroomtemperatureionicliquidsatgoldandplatinumelectrodesinthetemperaturerange298318k
AT comptonr investigatingthemechanismandelectrodekineticsoftheoxygensuperoxideo2o2coupleinvariousroomtemperatureionicliquidsatgoldandplatinumelectrodesinthetemperaturerange298318k