Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling...

Full description

Bibliographic Details
Main Authors: Dykes, J, Abdul-Rahman, A, Archambault, D, Bach, B, Borgo, R, Chen, M, Enright, J, Fang, H, Firat, EE, Freeman, E, Gönen, T, Harris, C, Jianu, R, John, NW, Khan, S, Lahiff, A, Laramee, RS, Matthews, L, Mohr, S, Nguyen, PH, Rahat, AAM, Reeve, R, Ritsos, PD, Roberts, JC, Slingsby, A, Swallow, B, Torsney-Weir, T, Turkay, C, Turner, R, Vidal, FP, Wang, Q, Wood, J, Xu, K
Format: Journal article
Language:English
Published: Royal Society 2022
_version_ 1797107946322132992
author Dykes, J
Abdul-Rahman, A
Archambault, D
Bach, B
Borgo, R
Chen, M
Enright, J
Fang, H
Firat, EE
Freeman, E
Gönen, T
Harris, C
Jianu, R
John, NW
Khan, S
Lahiff, A
Laramee, RS
Matthews, L
Mohr, S
Nguyen, PH
Rahat, AAM
Reeve, R
Ritsos, PD
Roberts, JC
Slingsby, A
Swallow, B
Torsney-Weir, T
Turkay, C
Turner, R
Vidal, FP
Wang, Q
Wood, J
Xu, K
author_facet Dykes, J
Abdul-Rahman, A
Archambault, D
Bach, B
Borgo, R
Chen, M
Enright, J
Fang, H
Firat, EE
Freeman, E
Gönen, T
Harris, C
Jianu, R
John, NW
Khan, S
Lahiff, A
Laramee, RS
Matthews, L
Mohr, S
Nguyen, PH
Rahat, AAM
Reeve, R
Ritsos, PD
Roberts, JC
Slingsby, A
Swallow, B
Torsney-Weir, T
Turkay, C
Turner, R
Vidal, FP
Wang, Q
Wood, J
Xu, K
author_sort Dykes, J
collection OXFORD
description We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
first_indexed 2024-03-07T07:21:08Z
format Journal article
id oxford-uuid:4b11ceff-dfa9-499a-8319-fb9a59c7261e
institution University of Oxford
language English
last_indexed 2024-03-07T07:21:08Z
publishDate 2022
publisher Royal Society
record_format dspace
spelling oxford-uuid:4b11ceff-dfa9-499a-8319-fb9a59c7261e2022-10-18T16:29:15ZVisualization for epidemiological modelling: challenges, solutions, reflections and recommendationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4b11ceff-dfa9-499a-8319-fb9a59c7261eEnglishSymplectic ElementsRoyal Society2022Dykes, JAbdul-Rahman, AArchambault, DBach, BBorgo, RChen, MEnright, JFang, HFirat, EEFreeman, EGönen, THarris, CJianu, RJohn, NWKhan, SLahiff, ALaramee, RSMatthews, LMohr, SNguyen, PHRahat, AAMReeve, RRitsos, PDRoberts, JCSlingsby, ASwallow, BTorsney-Weir, TTurkay, CTurner, RVidal, FPWang, QWood, JXu, KWe report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
spellingShingle Dykes, J
Abdul-Rahman, A
Archambault, D
Bach, B
Borgo, R
Chen, M
Enright, J
Fang, H
Firat, EE
Freeman, E
Gönen, T
Harris, C
Jianu, R
John, NW
Khan, S
Lahiff, A
Laramee, RS
Matthews, L
Mohr, S
Nguyen, PH
Rahat, AAM
Reeve, R
Ritsos, PD
Roberts, JC
Slingsby, A
Swallow, B
Torsney-Weir, T
Turkay, C
Turner, R
Vidal, FP
Wang, Q
Wood, J
Xu, K
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_full Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_fullStr Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_full_unstemmed Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_short Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
title_sort visualization for epidemiological modelling challenges solutions reflections and recommendations
work_keys_str_mv AT dykesj visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT abdulrahmana visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT archambaultd visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT bachb visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT borgor visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT chenm visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT enrightj visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT fangh visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT firatee visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT freemane visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT gonent visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT harrisc visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT jianur visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT johnnw visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT khans visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT lahiffa visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT larameers visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT matthewsl visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT mohrs visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT nguyenph visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT rahataam visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT reever visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT ritsospd visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT robertsjc visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT slingsbya visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT swallowb visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT torsneyweirt visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT turkayc visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT turnerr visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT vidalfp visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT wangq visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT woodj visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations
AT xuk visualizationforepidemiologicalmodellingchallengessolutionsreflectionsandrecommendations