OFFER: Off-environment reinforcement learning
Policy gradient methods have been widely applied in reinforcement learning. For reasons of safety and cost, learning is often conducted using a simulator. However, learning in simulation does not traditionally utilise the opportunity to improve learning by adjusting certain environment variables - s...
主要な著者: | Ciosek, K, Whiteson, S |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
AAAI Press
2017
|
類似資料
-
Expected policy gradients for reinforcement learning
著者:: Ciosek, K, 等
出版事項: (2020) -
Robust reinforcement learning with Bayesian optimisation and quadrature
著者:: Paul, S, 等
出版事項: (2020) -
Expected policy gradients
著者:: Ciosek, K, 等
出版事項: (2018) -
Loaded DiCE: Trading off bias and variance in any-order score function gradient estimators for reinforcement learning
著者:: Farquhar, G, 等
出版事項: (2019) -
Fourier policy gradients
著者:: Fellows, M, 等
出版事項: (2018)