DAMNETS: a deep autoregressive model for generating Markovian network time series
Generative models for network time series (also known as dynamic graphs) have tremendous potential in fields such as epidemiology, biology and economics, where complex graph-based dynamics are core objects of study. Designing flexible and scalable generative models is a very challenging task due to...
Hoofdauteurs: | Clarkson, J, Cucuringu, M, Elliott, A, Reinert, G |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
Journal of Machine Learning Research
2022
|
Gelijkaardige items
-
The GNAR-edge model: a network autoregressive model for networks with time-varying edge weights
door: Mantziou, A, et al.
Gepubliceerd in: (2023) -
DAMNet: Dual Attention Mechanism Deep Neural Network for Underwater Biological Image Classification
door: Peixin Qu, et al.
Gepubliceerd in: (2023-01-01) -
DAMNet: A Dual Adjacent Indexing and Multi-Deraining Network for Real-Time Image Deraining
door: Penghui Zhao, et al.
Gepubliceerd in: (2022-12-01) -
Random walk based conditional generative model for temporal networks with attributes
door: Limnios, S, et al.
Gepubliceerd in: (2022) -
Detection and clustering of lead-lag networks for multivariate time series with an application to financial markets
door: Bennett, S, et al.
Gepubliceerd in: (2022)