DAMNETS: a deep autoregressive model for generating Markovian network time series
Generative models for network time series (also known as dynamic graphs) have tremendous potential in fields such as epidemiology, biology and economics, where complex graph-based dynamics are core objects of study. Designing flexible and scalable generative models is a very challenging task due to...
Asıl Yazarlar: | Clarkson, J, Cucuringu, M, Elliott, A, Reinert, G |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
Journal of Machine Learning Research
2022
|
Benzer Materyaller
-
The GNAR-edge model: a network autoregressive model for networks with time-varying edge weights
Yazar:: Mantziou, A, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
DAMNet: Dual Attention Mechanism Deep Neural Network for Underwater Biological Image Classification
Yazar:: Peixin Qu, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
DAMNet: A Dual Adjacent Indexing and Multi-Deraining Network for Real-Time Image Deraining
Yazar:: Penghui Zhao, ve diğerleri
Baskı/Yayın Bilgisi: (2022-12-01) -
Random walk based conditional generative model for temporal networks with attributes
Yazar:: Limnios, S, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Detection and clustering of lead-lag networks for multivariate time series with an application to financial markets
Yazar:: Bennett, S, ve diğerleri
Baskı/Yayın Bilgisi: (2022)