DAMNETS: a deep autoregressive model for generating Markovian network time series
Generative models for network time series (also known as dynamic graphs) have tremendous potential in fields such as epidemiology, biology and economics, where complex graph-based dynamics are core objects of study. Designing flexible and scalable generative models is a very challenging task due to...
Những tác giả chính: | Clarkson, J, Cucuringu, M, Elliott, A, Reinert, G |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Journal of Machine Learning Research
2022
|
Những quyển sách tương tự
-
The GNAR-edge model: a network autoregressive model for networks with time-varying edge weights
Bằng: Mantziou, A, et al.
Được phát hành: (2023) -
DAMNet: Dual Attention Mechanism Deep Neural Network for Underwater Biological Image Classification
Bằng: Peixin Qu, et al.
Được phát hành: (2023-01-01) -
DAMNet: A Dual Adjacent Indexing and Multi-Deraining Network for Real-Time Image Deraining
Bằng: Penghui Zhao, et al.
Được phát hành: (2022-12-01) -
Random walk based conditional generative model for temporal networks with attributes
Bằng: Limnios, S, et al.
Được phát hành: (2022) -
Detection and clustering of lead-lag networks for multivariate time series with an application to financial markets
Bằng: Bennett, S, et al.
Được phát hành: (2022)