The scaling limit of random outerplanar maps
<p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. Th...
Váldodahkki: | |
---|---|
Materiálatiipa: | Journal article |
Almmustuhtton: |
Institute Henri Poincaré
2016
|
Čoahkkáigeassu: | <p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204). </p> |
---|