The scaling limit of random outerplanar maps

<p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. Th...

Mô tả đầy đủ

Chi tiết về thư mục
Tác giả chính: Caraceni, A
Định dạng: Journal article
Được phát hành: Institute Henri Poincaré 2016
Miêu tả
Tóm tắt:<p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204). </p>