The scaling limit of random outerplanar maps

<p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. Th...

Full description

Bibliographic Details
Main Author: Caraceni, A
Format: Journal article
Published: Institute Henri Poincaré 2016
_version_ 1797067573558247424
author Caraceni, A
author_facet Caraceni, A
author_sort Caraceni, A
collection OXFORD
description <p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204). </p>
first_indexed 2024-03-06T21:58:15Z
format Journal article
id oxford-uuid:4db4da73-ed1b-4321-a24b-94e4a06f43c3
institution University of Oxford
last_indexed 2024-03-06T21:58:15Z
publishDate 2016
publisher Institute Henri Poincaré
record_format dspace
spelling oxford-uuid:4db4da73-ed1b-4321-a24b-94e4a06f43c32022-03-26T15:56:47ZThe scaling limit of random outerplanar mapsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4db4da73-ed1b-4321-a24b-94e4a06f43c3Symplectic Elements at OxfordInstitute Henri Poincaré2016Caraceni, A <p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204). </p>
spellingShingle Caraceni, A
The scaling limit of random outerplanar maps
title The scaling limit of random outerplanar maps
title_full The scaling limit of random outerplanar maps
title_fullStr The scaling limit of random outerplanar maps
title_full_unstemmed The scaling limit of random outerplanar maps
title_short The scaling limit of random outerplanar maps
title_sort scaling limit of random outerplanar maps
work_keys_str_mv AT caracenia thescalinglimitofrandomouterplanarmaps
AT caracenia scalinglimitofrandomouterplanarmaps