The scaling limit of random outerplanar maps
<p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. Th...
Auteur principal: | Caraceni, A |
---|---|
Format: | Journal article |
Publié: |
Institute Henri Poincaré
2016
|
Documents similaires
-
On the spread of outerplanar graphs
par: Gotshall Daniel, et autres
Publié: (2022-03-01) -
Fuzzy Outerplanar Graphs and Its Applications
par: Deivanai Jaisankar, et autres
Publié: (2024-09-01) -
On the number of series parallel and outerplanar graphs
par: Manuel Bodirsky, et autres
Publié: (2005-01-01) -
Strong Chromatic Index of Outerplanar Graphs
par: Ying Wang, et autres
Publié: (2022-04-01) -
Choosability with separation of cycles and outerplanar graphs
par: Jean-Christophe Godin, et autres
Publié: (2023-01-01)