Radiation-damage investigation of a DNA 16-mer

In macromolecular crystallography, a great deal of effort has been invested in understanding radiation-damage progression. While the sensitivity of protein crystals has been well characterized, crystals of DNA and of DNA-protein complexes have not thus far been studied as thoroughly. Here, a systema...

Full description

Bibliographic Details
Main Authors: Bugris, V, Harmat, V, Ferenc, G, Brockhauser, S, Carmichael, I, Garman, E
Format: Journal article
Language:English
Published: International Union of Crystallography 2019
_version_ 1826271547162099712
author Bugris, V
Harmat, V
Ferenc, G
Brockhauser, S
Carmichael, I
Garman, E
author_facet Bugris, V
Harmat, V
Ferenc, G
Brockhauser, S
Carmichael, I
Garman, E
author_sort Bugris, V
collection OXFORD
description In macromolecular crystallography, a great deal of effort has been invested in understanding radiation-damage progression. While the sensitivity of protein crystals has been well characterized, crystals of DNA and of DNA-protein complexes have not thus far been studied as thoroughly. Here, a systematic investigation of radiation damage to a crystal of a DNA 16-mer diffracting to 1.8 Å resolution and held at 100 K, up to an absorbed dose of 45 MGy, is reported. The RIDL (Radiation-Induced Density Loss) automated computational tool was used for electron-density analysis. Both the global and specific damage to the DNA crystal as a function of dose were monitored, following careful calibration of the X-ray flux and beam profile. The DNA crystal was found to be fairly radiation insensitive to both global and specific damage, with half of the initial diffraction intensity being lost at an absorbed average diffraction-weighted dose, D1/2, of 19 MGy, compared with 9 MGy for chicken egg-white lysozyme crystals under the same beam conditions but at the higher resolution of 1.4 Å. The coefficient of sensitivity of the DNA crystal was 0.014 Å2 MGy-1, which is similar to that observed for proteins. These results imply that the significantly greater radiation hardness of DNA and RNA compared with protein observed in a DNA-protein complex and an RNA-protein complex could be due to scavenging action by the protein, thereby protecting the DNA and RNA in these studies. In terms of specific damage, the regions of DNA that were found to be sensitive were those associated with some of the bound calcium ions sequestered from the crystallization buffer. In contrast, moieties farther from these sites showed only small changes even at higher doses.
first_indexed 2024-03-06T21:58:22Z
format Journal article
id oxford-uuid:4dbc6eff-fef0-4a4a-96e6-38f641f7ee14
institution University of Oxford
language English
last_indexed 2024-03-06T21:58:22Z
publishDate 2019
publisher International Union of Crystallography
record_format dspace
spelling oxford-uuid:4dbc6eff-fef0-4a4a-96e6-38f641f7ee142022-03-26T15:57:03ZRadiation-damage investigation of a DNA 16-merJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4dbc6eff-fef0-4a4a-96e6-38f641f7ee14EnglishSymplectic Elements at OxfordInternational Union of Crystallography2019Bugris, VHarmat, VFerenc, GBrockhauser, SCarmichael, IGarman, EIn macromolecular crystallography, a great deal of effort has been invested in understanding radiation-damage progression. While the sensitivity of protein crystals has been well characterized, crystals of DNA and of DNA-protein complexes have not thus far been studied as thoroughly. Here, a systematic investigation of radiation damage to a crystal of a DNA 16-mer diffracting to 1.8 Å resolution and held at 100 K, up to an absorbed dose of 45 MGy, is reported. The RIDL (Radiation-Induced Density Loss) automated computational tool was used for electron-density analysis. Both the global and specific damage to the DNA crystal as a function of dose were monitored, following careful calibration of the X-ray flux and beam profile. The DNA crystal was found to be fairly radiation insensitive to both global and specific damage, with half of the initial diffraction intensity being lost at an absorbed average diffraction-weighted dose, D1/2, of 19 MGy, compared with 9 MGy for chicken egg-white lysozyme crystals under the same beam conditions but at the higher resolution of 1.4 Å. The coefficient of sensitivity of the DNA crystal was 0.014 Å2 MGy-1, which is similar to that observed for proteins. These results imply that the significantly greater radiation hardness of DNA and RNA compared with protein observed in a DNA-protein complex and an RNA-protein complex could be due to scavenging action by the protein, thereby protecting the DNA and RNA in these studies. In terms of specific damage, the regions of DNA that were found to be sensitive were those associated with some of the bound calcium ions sequestered from the crystallization buffer. In contrast, moieties farther from these sites showed only small changes even at higher doses.
spellingShingle Bugris, V
Harmat, V
Ferenc, G
Brockhauser, S
Carmichael, I
Garman, E
Radiation-damage investigation of a DNA 16-mer
title Radiation-damage investigation of a DNA 16-mer
title_full Radiation-damage investigation of a DNA 16-mer
title_fullStr Radiation-damage investigation of a DNA 16-mer
title_full_unstemmed Radiation-damage investigation of a DNA 16-mer
title_short Radiation-damage investigation of a DNA 16-mer
title_sort radiation damage investigation of a dna 16 mer
work_keys_str_mv AT bugrisv radiationdamageinvestigationofadna16mer
AT harmatv radiationdamageinvestigationofadna16mer
AT ferencg radiationdamageinvestigationofadna16mer
AT brockhausers radiationdamageinvestigationofadna16mer
AT carmichaeli radiationdamageinvestigationofadna16mer
AT garmane radiationdamageinvestigationofadna16mer