Radiation-damage investigation of a DNA 16-mer
In macromolecular crystallography, a great deal of effort has been invested in understanding radiation-damage progression. While the sensitivity of protein crystals has been well characterized, crystals of DNA and of DNA-protein complexes have not thus far been studied as thoroughly. Here, a systema...
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
International Union of Crystallography
2019
|
_version_ | 1826271547162099712 |
---|---|
author | Bugris, V Harmat, V Ferenc, G Brockhauser, S Carmichael, I Garman, E |
author_facet | Bugris, V Harmat, V Ferenc, G Brockhauser, S Carmichael, I Garman, E |
author_sort | Bugris, V |
collection | OXFORD |
description | In macromolecular crystallography, a great deal of effort has been invested in understanding radiation-damage progression. While the sensitivity of protein crystals has been well characterized, crystals of DNA and of DNA-protein complexes have not thus far been studied as thoroughly. Here, a systematic investigation of radiation damage to a crystal of a DNA 16-mer diffracting to 1.8 Å resolution and held at 100 K, up to an absorbed dose of 45 MGy, is reported. The RIDL (Radiation-Induced Density Loss) automated computational tool was used for electron-density analysis. Both the global and specific damage to the DNA crystal as a function of dose were monitored, following careful calibration of the X-ray flux and beam profile. The DNA crystal was found to be fairly radiation insensitive to both global and specific damage, with half of the initial diffraction intensity being lost at an absorbed average diffraction-weighted dose, D1/2, of 19 MGy, compared with 9 MGy for chicken egg-white lysozyme crystals under the same beam conditions but at the higher resolution of 1.4 Å. The coefficient of sensitivity of the DNA crystal was 0.014 Å2 MGy-1, which is similar to that observed for proteins. These results imply that the significantly greater radiation hardness of DNA and RNA compared with protein observed in a DNA-protein complex and an RNA-protein complex could be due to scavenging action by the protein, thereby protecting the DNA and RNA in these studies. In terms of specific damage, the regions of DNA that were found to be sensitive were those associated with some of the bound calcium ions sequestered from the crystallization buffer. In contrast, moieties farther from these sites showed only small changes even at higher doses. |
first_indexed | 2024-03-06T21:58:22Z |
format | Journal article |
id | oxford-uuid:4dbc6eff-fef0-4a4a-96e6-38f641f7ee14 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T21:58:22Z |
publishDate | 2019 |
publisher | International Union of Crystallography |
record_format | dspace |
spelling | oxford-uuid:4dbc6eff-fef0-4a4a-96e6-38f641f7ee142022-03-26T15:57:03ZRadiation-damage investigation of a DNA 16-merJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4dbc6eff-fef0-4a4a-96e6-38f641f7ee14EnglishSymplectic Elements at OxfordInternational Union of Crystallography2019Bugris, VHarmat, VFerenc, GBrockhauser, SCarmichael, IGarman, EIn macromolecular crystallography, a great deal of effort has been invested in understanding radiation-damage progression. While the sensitivity of protein crystals has been well characterized, crystals of DNA and of DNA-protein complexes have not thus far been studied as thoroughly. Here, a systematic investigation of radiation damage to a crystal of a DNA 16-mer diffracting to 1.8 Å resolution and held at 100 K, up to an absorbed dose of 45 MGy, is reported. The RIDL (Radiation-Induced Density Loss) automated computational tool was used for electron-density analysis. Both the global and specific damage to the DNA crystal as a function of dose were monitored, following careful calibration of the X-ray flux and beam profile. The DNA crystal was found to be fairly radiation insensitive to both global and specific damage, with half of the initial diffraction intensity being lost at an absorbed average diffraction-weighted dose, D1/2, of 19 MGy, compared with 9 MGy for chicken egg-white lysozyme crystals under the same beam conditions but at the higher resolution of 1.4 Å. The coefficient of sensitivity of the DNA crystal was 0.014 Å2 MGy-1, which is similar to that observed for proteins. These results imply that the significantly greater radiation hardness of DNA and RNA compared with protein observed in a DNA-protein complex and an RNA-protein complex could be due to scavenging action by the protein, thereby protecting the DNA and RNA in these studies. In terms of specific damage, the regions of DNA that were found to be sensitive were those associated with some of the bound calcium ions sequestered from the crystallization buffer. In contrast, moieties farther from these sites showed only small changes even at higher doses. |
spellingShingle | Bugris, V Harmat, V Ferenc, G Brockhauser, S Carmichael, I Garman, E Radiation-damage investigation of a DNA 16-mer |
title | Radiation-damage investigation of a DNA 16-mer |
title_full | Radiation-damage investigation of a DNA 16-mer |
title_fullStr | Radiation-damage investigation of a DNA 16-mer |
title_full_unstemmed | Radiation-damage investigation of a DNA 16-mer |
title_short | Radiation-damage investigation of a DNA 16-mer |
title_sort | radiation damage investigation of a dna 16 mer |
work_keys_str_mv | AT bugrisv radiationdamageinvestigationofadna16mer AT harmatv radiationdamageinvestigationofadna16mer AT ferencg radiationdamageinvestigationofadna16mer AT brockhausers radiationdamageinvestigationofadna16mer AT carmichaeli radiationdamageinvestigationofadna16mer AT garmane radiationdamageinvestigationofadna16mer |