Distributed self localisation of sensor networks using particle methods
We describe how a completely decentralized version of Recursive Maximum Likelihood (RML) can be implemented in dynamic graphical models through the propagation of suitable messages that are exchanged between neighbouring nodes of the graph. The resulting algorithm can be interpreted as a generalizat...
Hlavní autoři: | Kantas, N, Singh, S, Doucet, A |
---|---|
Médium: | Conference item |
Vydáno: |
2006
|
Podobné jednotky
-
Distributed Online self-localization and tracking in sensor networks
Autor: Kantas, N, a další
Vydáno: (2007) -
Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
Autor: Kantas, N, a další
Vydáno: (2012) -
A distributed recursive maximum likelihood implementation for sensor registration
Autor: Kantas, N, a další
Vydáno: (2006) -
Simulation-based optimal sensor scheduling with application to observer trajectory planning
Autor: Singh, S, a další
Vydáno: (2007) -
An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models
Autor: Kantas, N, a další
Vydáno: (2009)