Distributed self localisation of sensor networks using particle methods
We describe how a completely decentralized version of Recursive Maximum Likelihood (RML) can be implemented in dynamic graphical models through the propagation of suitable messages that are exchanged between neighbouring nodes of the graph. The resulting algorithm can be interpreted as a generalizat...
主要な著者: | Kantas, N, Singh, S, Doucet, A |
---|---|
フォーマット: | Conference item |
出版事項: |
2006
|
類似資料
-
Distributed Online self-localization and tracking in sensor networks
著者:: Kantas, N, 等
出版事項: (2007) -
Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
著者:: Kantas, N, 等
出版事項: (2012) -
A distributed recursive maximum likelihood implementation for sensor registration
著者:: Kantas, N, 等
出版事項: (2006) -
Simulation-based optimal sensor scheduling with application to observer trajectory planning
著者:: Singh, S, 等
出版事項: (2007) -
An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models
著者:: Kantas, N, 等
出版事項: (2009)