Distributed self localisation of sensor networks using particle methods
We describe how a completely decentralized version of Recursive Maximum Likelihood (RML) can be implemented in dynamic graphical models through the propagation of suitable messages that are exchanged between neighbouring nodes of the graph. The resulting algorithm can be interpreted as a generalizat...
Asıl Yazarlar: | Kantas, N, Singh, S, Doucet, A |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
2006
|
Benzer Materyaller
-
Distributed Online self-localization and tracking in sensor networks
Yazar:: Kantas, N, ve diğerleri
Baskı/Yayın Bilgisi: (2007) -
Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
Yazar:: Kantas, N, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
A distributed recursive maximum likelihood implementation for sensor registration
Yazar:: Kantas, N, ve diğerleri
Baskı/Yayın Bilgisi: (2006) -
Simulation-based optimal sensor scheduling with application to observer trajectory planning
Yazar:: Singh, S, ve diğerleri
Baskı/Yayın Bilgisi: (2007) -
An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models
Yazar:: Kantas, N, ve diğerleri
Baskı/Yayın Bilgisi: (2009)