The Pjateckiǐ-Šapiro prime number theorem
It is proved that the sequence [nc] contains the expected number of primes whenever 1 < c < 1.1404..., thus improving Kolesnik's range 1 < c < 1.1111.... An identity of Vaughan's type in five variables is needed. © 1983.
Váldodahkki: | |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
1983
|
_version_ | 1826271668541063168 |
---|---|
author | Heath-Brown, D |
author_facet | Heath-Brown, D |
author_sort | Heath-Brown, D |
collection | OXFORD |
description | It is proved that the sequence [nc] contains the expected number of primes whenever 1 < c < 1.1404..., thus improving Kolesnik's range 1 < c < 1.1111.... An identity of Vaughan's type in five variables is needed. © 1983. |
first_indexed | 2024-03-06T22:00:18Z |
format | Journal article |
id | oxford-uuid:4e5a28c9-62cd-4a93-a1a3-694df4def93c |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:00:18Z |
publishDate | 1983 |
record_format | dspace |
spelling | oxford-uuid:4e5a28c9-62cd-4a93-a1a3-694df4def93c2022-03-26T16:00:41ZThe Pjateckiǐ-Šapiro prime number theoremJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4e5a28c9-62cd-4a93-a1a3-694df4def93cEnglishSymplectic Elements at Oxford1983Heath-Brown, DIt is proved that the sequence [nc] contains the expected number of primes whenever 1 < c < 1.1404..., thus improving Kolesnik's range 1 < c < 1.1111.... An identity of Vaughan's type in five variables is needed. © 1983. |
spellingShingle | Heath-Brown, D The Pjateckiǐ-Šapiro prime number theorem |
title | The Pjateckiǐ-Šapiro prime number theorem |
title_full | The Pjateckiǐ-Šapiro prime number theorem |
title_fullStr | The Pjateckiǐ-Šapiro prime number theorem |
title_full_unstemmed | The Pjateckiǐ-Šapiro prime number theorem |
title_short | The Pjateckiǐ-Šapiro prime number theorem |
title_sort | pjateckii sapiro prime number theorem |
work_keys_str_mv | AT heathbrownd thepjateckiisapiroprimenumbertheorem AT heathbrownd pjateckiisapiroprimenumbertheorem |