Neural latent geometry search: product manifold inference via Gromov-Hausdorff-informed Bayesian optimization
Recent research indicates that the performance of machine learning models can be improved by aligning the geometry of the latent space with the underlying data structure. Rather than relying solely on Euclidean space, researchers have proposed using hyperbolic and spherical spaces with constant curv...
Auteurs principaux: | Sáez de Ocáriz Borde, H, Arroyo, Á, Morales López, I, Posner, I, Dong, X |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
Neural Information Processing Systems Foundation
2024
|
Documents similaires
-
Projections of model spaces for latent graph inference
par: Posner, H, et autres
Publié: (2023) -
On the categorical meaning of Hausdorff and Gromov distances, I
par: Akhvlediani, A, et autres
Publié: (2010) -
On the categorical meaning of Hausdorff and Gromov distances‚ I
par: Akhvlediani, A, et autres
Publié: (2008) -
Hausdorff and Gromov Distances in Quantale−Enriched Categories
par: Akhvlediani, A
Publié: (2008) -
Gromov–Hausdorff–Prokhorov convergence of vertex cut-trees of n-leaf Galton–Watson trees
par: He, H, et autres
Publié: (2019)