On a novel gradient flow structure for the aggregation equation

The aggregation equation arises naturally in kinetic theory in the study of granular media, and its interpretation as a 2-Wasserstein gradient flow for the nonlocal interaction energy is well-known. Starting from the spatially homogeneous inelastic Boltzmann equation, a formal Taylor expansion revea...

全面介绍

书目详细资料
Main Authors: Esposito, A, Gvalani, RS, Schlichting, A, Schmidtchen, M
格式: Journal article
语言:English
出版: Springer 2024
实物特征
总结:The aggregation equation arises naturally in kinetic theory in the study of granular media, and its interpretation as a 2-Wasserstein gradient flow for the nonlocal interaction energy is well-known. Starting from the spatially homogeneous inelastic Boltzmann equation, a formal Taylor expansion reveals a link between this equation and the aggregation equation with an appropriately chosen interaction potential. Inspired by this formal link and the fact that the associated aggregation equation also dissipates the kinetic energy, we present a novel way of interpreting the aggregation equation as a gradient flow, in the sense of curves of maximal slope, of the kinetic energy, rather than the usual interaction energy, with respect to an appropriately constructed transportation metric on the space of probability measures.