Synthesis and properties of nucleic acid analogues containing artificial backbones

<p>Nucleic acid analogues are very attractive molecules for therapeutic applications as in principle they can specifically inhibit the expression of virtually any gene through antisense or RNA interference pathways. For this purpose, nucleic acid analogues with modified backbones have advantag...

Full description

Bibliographic Details
Main Author: Tyburn, A
Other Authors: Brown, T
Format: Thesis
Language:English
Published: 2019
Subjects:
_version_ 1797067980764348416
author Tyburn, A
author2 Brown, T
author_facet Brown, T
Tyburn, A
author_sort Tyburn, A
collection OXFORD
description <p>Nucleic acid analogues are very attractive molecules for therapeutic applications as in principle they can specifically inhibit the expression of virtually any gene through antisense or RNA interference pathways. For this purpose, nucleic acid analogues with modified backbones have advantageous properties compared to their natural counterparts. In particular they can provide better resistance to nucleases as well as improving cellular uptake. However, radically changing the nucleic acid backbone while maintaining a good affinity for a mRNA or DNA target remains challenging. Developing synthetic strategies to conveniently access new modified backbones that could be used in antisense oligonucleotides is therefore essential. With this in mind a new solid-phase method to efficiently functionalise an amine-modified DNA backbone has been developed. Using this approach, three new oligonucleotide modified backbones have been synthesised, and their hybridisation properties have been investigated.</p> <p>Modified DNA backbones are also potentially useful in the development of new methods for chemical-ligation of oligonucleotides. This approach could allow the large-scale de novo synthesis of genes containing site-specific chemical modifications including epigenetic signals. Such constructs represent challenging targets in medicinal and biotechnology applications. An important class of modified DNA linkages containing a triazole ring developed in our research group has been further investigated through the synthesis of two new triazole modified backbones. The synthesis of a DNA amide backbone with favourable duplex stability was also performed. A detailed study of the biophysical properties of the above modified backbones including their performance as templates for various DNA polymerases has been carried out.</p>
first_indexed 2024-03-06T22:04:07Z
format Thesis
id oxford-uuid:4f940f31-c5ea-4211-b7a7-58897aeb4191
institution University of Oxford
language English
last_indexed 2024-03-06T22:04:07Z
publishDate 2019
record_format dspace
spelling oxford-uuid:4f940f31-c5ea-4211-b7a7-58897aeb41912022-03-26T16:08:02ZSynthesis and properties of nucleic acid analogues containing artificial backbonesThesishttp://purl.org/coar/resource_type/c_db06uuid:4f940f31-c5ea-4211-b7a7-58897aeb4191Nucleic acidsEnglishORA Deposit2019Tyburn, ABrown, T<p>Nucleic acid analogues are very attractive molecules for therapeutic applications as in principle they can specifically inhibit the expression of virtually any gene through antisense or RNA interference pathways. For this purpose, nucleic acid analogues with modified backbones have advantageous properties compared to their natural counterparts. In particular they can provide better resistance to nucleases as well as improving cellular uptake. However, radically changing the nucleic acid backbone while maintaining a good affinity for a mRNA or DNA target remains challenging. Developing synthetic strategies to conveniently access new modified backbones that could be used in antisense oligonucleotides is therefore essential. With this in mind a new solid-phase method to efficiently functionalise an amine-modified DNA backbone has been developed. Using this approach, three new oligonucleotide modified backbones have been synthesised, and their hybridisation properties have been investigated.</p> <p>Modified DNA backbones are also potentially useful in the development of new methods for chemical-ligation of oligonucleotides. This approach could allow the large-scale de novo synthesis of genes containing site-specific chemical modifications including epigenetic signals. Such constructs represent challenging targets in medicinal and biotechnology applications. An important class of modified DNA linkages containing a triazole ring developed in our research group has been further investigated through the synthesis of two new triazole modified backbones. The synthesis of a DNA amide backbone with favourable duplex stability was also performed. A detailed study of the biophysical properties of the above modified backbones including their performance as templates for various DNA polymerases has been carried out.</p>
spellingShingle Nucleic acids
Tyburn, A
Synthesis and properties of nucleic acid analogues containing artificial backbones
title Synthesis and properties of nucleic acid analogues containing artificial backbones
title_full Synthesis and properties of nucleic acid analogues containing artificial backbones
title_fullStr Synthesis and properties of nucleic acid analogues containing artificial backbones
title_full_unstemmed Synthesis and properties of nucleic acid analogues containing artificial backbones
title_short Synthesis and properties of nucleic acid analogues containing artificial backbones
title_sort synthesis and properties of nucleic acid analogues containing artificial backbones
topic Nucleic acids
work_keys_str_mv AT tyburna synthesisandpropertiesofnucleicacidanaloguescontainingartificialbackbones