Magnetic monopoles and synthetic spin-orbit coupling in Rydberg macrodimers.
We show that sizable Abelian and non-Abelian gauge fields arise in the relative motion of two dipole-dipole interacting Rydberg atoms. Our system exhibits two magnetic monopoles for adiabatic motion in one internal two-atom state. These monopoles occur at a characteristic distance between the atoms...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2013
|
Summary: | We show that sizable Abelian and non-Abelian gauge fields arise in the relative motion of two dipole-dipole interacting Rydberg atoms. Our system exhibits two magnetic monopoles for adiabatic motion in one internal two-atom state. These monopoles occur at a characteristic distance between the atoms that is of the order of one micron. The deflection of the relative motion due to the Lorentz force gives rise to a clear signature of the effective magnetic field. In addition, we consider nonadiabatic transitions between two near-degenerate internal states and show that the associated gauge fields are non-Abelian. We present quantum mechanical calculations of this synthetic spin-orbit coupling and show that it realizes a velocity-dependent beam splitter. |
---|