Transient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method

This paper presents the development of a transient thermal model of the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine based on a hybrid finite difference and lumped parameter method. A maximum deviation between simulated and measured temperature of 2.4°C is recorded after using a M...

Full description

Bibliographic Details
Main Authors: Hey, J, Howey, D, Martínez-Botas, R, Lampérth, M
Format: Conference item
Published: 2011
_version_ 1797068346109198336
author Hey, J
Howey, D
Martínez-Botas, R
Lampérth, M
author_facet Hey, J
Howey, D
Martínez-Botas, R
Lampérth, M
author_sort Hey, J
collection OXFORD
description This paper presents the development of a transient thermal model of the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine based on a hybrid finite difference and lumped parameter method. A maximum deviation between simulated and measured temperature of 2.4°C is recorded after using a Monte Carlo simulation to optimise model parameters representing a 53% reduction in temperature deviation. The simulated temperature deviations are lower than the measurement error on average and the thermal model is computationally simple to solve. It is thus suitable for transient temperature prediction and can be integrated with the system control loop for feed forward temperature prediction to achieve active thermal management of the system.
first_indexed 2024-03-06T22:09:26Z
format Conference item
id oxford-uuid:514b17a2-5f22-421c-88dd-ce85fc30622d
institution University of Oxford
last_indexed 2024-03-06T22:09:26Z
publishDate 2011
record_format dspace
spelling oxford-uuid:514b17a2-5f22-421c-88dd-ce85fc30622d2022-03-26T16:18:42ZTransient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo methodConference itemhttp://purl.org/coar/resource_type/c_5794uuid:514b17a2-5f22-421c-88dd-ce85fc30622dSymplectic Elements at Oxford2011Hey, JHowey, DMartínez-Botas, RLampérth, MThis paper presents the development of a transient thermal model of the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine based on a hybrid finite difference and lumped parameter method. A maximum deviation between simulated and measured temperature of 2.4°C is recorded after using a Monte Carlo simulation to optimise model parameters representing a 53% reduction in temperature deviation. The simulated temperature deviations are lower than the measurement error on average and the thermal model is computationally simple to solve. It is thus suitable for transient temperature prediction and can be integrated with the system control loop for feed forward temperature prediction to achieve active thermal management of the system.
spellingShingle Hey, J
Howey, D
Martínez-Botas, R
Lampérth, M
Transient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method
title Transient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method
title_full Transient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method
title_fullStr Transient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method
title_full_unstemmed Transient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method
title_short Transient thermal modelling of an axial flux permanent magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method
title_sort transient thermal modelling of an axial flux permanent magnet afpm machine with model parameter optimisation using a monte carlo method
work_keys_str_mv AT heyj transientthermalmodellingofanaxialfluxpermanentmagnetafpmmachinewithmodelparameteroptimisationusingamontecarlomethod
AT howeyd transientthermalmodellingofanaxialfluxpermanentmagnetafpmmachinewithmodelparameteroptimisationusingamontecarlomethod
AT martinezbotasr transientthermalmodellingofanaxialfluxpermanentmagnetafpmmachinewithmodelparameteroptimisationusingamontecarlomethod
AT lamperthm transientthermalmodellingofanaxialfluxpermanentmagnetafpmmachinewithmodelparameteroptimisationusingamontecarlomethod