Series solution of Laplace problems

At the ANZIAM conference in Hobart in February, 2018, there were several talks on the solution of Laplace problems in multiply connected domains by means of conformal mapping. It appears to be not widely known that such problems can also be solved by the elementary method of series expansions with c...

Full description

Bibliographic Details
Main Author: Trefethen, LN
Format: Journal article
Published: Cambridge University Press 2018
Description
Summary:At the ANZIAM conference in Hobart in February, 2018, there were several talks on the solution of Laplace problems in multiply connected domains by means of conformal mapping. It appears to be not widely known that such problems can also be solved by the elementary method of series expansions with coefficients determined by least-squares fitting on the boundary. (These are not convergent series; the coefficients depend on the degree of the approximation.) Here we give a tutorial introduction to this method, which converges at an exponential rate if the boundary data are sufficiently well-behaved. The mathematical foundations go back to Runge in 1885 and Walsh in 1929. One of our examples involves an approximate Cantor set with up to 2048 components.