Bayesian sparse partial least squares.
Partial least squares (PLS) is a class of methods that makes use of a set of latent or unobserved variables to model the relation between (typically) two sets of input and output variables, respectively. Several flavors, depending on how the latent variables or components are computed, have been dev...
Váldodahkkit: | Vidaurre, D, Gerven, v, Bielza, C, Larrañaga, P, Heskes, T |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
Massachusetts Institute of Technology Press
2013
|
Geahča maid
-
Sparse regularized local regression
Dahkki: Vidaurre, D, et al.
Almmustuhtton: (2013) -
Sparse regularized local regression
Dahkki: Vidaurre, D, et al.
Almmustuhtton: (2013) -
Classification of neural signals from sparse autoregressive features
Dahkki: Vidaurre, D, et al.
Almmustuhtton: (2013) -
Classification of neural signals from sparse autoregressive features
Dahkki: Vidaurre, D, et al.
Almmustuhtton: (2013) -
Learning an L1-regularized Gaussian Bayesian network in the equivalence class space.
Dahkki: Vidaurre, D, et al.
Almmustuhtton: (2010)