Bayesian sparse partial least squares.
Partial least squares (PLS) is a class of methods that makes use of a set of latent or unobserved variables to model the relation between (typically) two sets of input and output variables, respectively. Several flavors, depending on how the latent variables or components are computed, have been dev...
Hlavní autoři: | Vidaurre, D, Gerven, v, Bielza, C, Larrañaga, P, Heskes, T |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Massachusetts Institute of Technology Press
2013
|
Podobné jednotky
-
Sparse regularized local regression
Autor: Vidaurre, D, a další
Vydáno: (2013) -
Sparse regularized local regression
Autor: Vidaurre, D, a další
Vydáno: (2013) -
Classification of neural signals from sparse autoregressive features
Autor: Vidaurre, D, a další
Vydáno: (2013) -
Classification of neural signals from sparse autoregressive features
Autor: Vidaurre, D, a další
Vydáno: (2013) -
Learning an L1-regularized Gaussian Bayesian network in the equivalence class space.
Autor: Vidaurre, D, a další
Vydáno: (2010)